Summit Family Hardware Installation Guide

for Switches Supported by ExtremeXOS 16 or Earlier

Copyright © 2017 Extreme Networks, Inc. All rights reserved.

Legal Notice

Extreme Networks, Inc. reserves the right to make changes in specifications and other information contained in this document and its website without prior notice. The reader should in all cases consult representatives of Extreme Networks to determine whether any such changes have been made.
The hardware, firmware, software or any specifications described or referred to in this document are subject to change without notice.

Trademarks

Extreme Networks and the Extreme Networks logo are trademarks or registered trademarks of Extreme Networks, Inc. in the United States and/or other countries.
All other names (including any product names) mentioned in this document are the property of their respective owners and may be trademarks or registered trademarks of their respective companies/owners.
For additional information on Extreme Networks trademarks, please see:
www.extremenetworks.com/company/legal/trademarks

Software Licensing

Some software files have been licensed under certain open source or third-party licenses. Enduser license agreements and open source declarations can be found at:
www.extremenetworks.com/support/policies/software-licensing

Support

For product support, phone the Global Technical Assistance Center (GTAC) at 1-800-998-2408 (toll-free in U.S. and Canada) or $+1-408-579-2826$. For the support phone number in other countries, visit: http://www.extremenetworks.com/support/contact/
For product documentation online, visit: https://www.extremenetworks.com/documentation/

Table of Contents

Preface 7
Audience 7
Conventions 7
Providing Feedback to Us 9
Getting Help 9
Related Publications 10
Chapter 1: Summit Switches 11
Overview of the Summit Switches 12
Summit X150 Series Switches 13
Summit $\times 250$ e Series Switches 18
Summit $\times 350$ Series Switches 31
Summit $\times 430$ Series Switches. 36
Summit $\times 440$ Series Switches. 42
Summit $\times 450, \times 450$ a, and $X 450$ e Series Switches. 66
Summit X450-G2 Series Switches 88
Summit $\times 460$ Series Switches. 99
Summit X460-G2 Series Switches 107
Summit $\times 480$ Series Switches. 121
Summit X650 Series Switches. 126
Summit X670 Series Switches 129
Summit X670-G2 Series Switches 135
Summit $\times 770$ Series Switches 139
Pluggable Interfaces for Summit Switches 143
Chapter 2: Power Supplies for Use with Summit Switches 145
External Power Supplies for Summit Switches 145
Replaceable Internal Power Supplies for Summit Switches 159
Chapter 3: Option Cards and Versatile Interface Modules 165
Summit XGM-2xn Option Card 166
Summit XGM2-2xn Option Card 167
Summit XGM2-2xf Option Card 168
Summit XGM2-2sf Option Card 169
Summit XGM2-2bt Option Card. 170
Versatile Interface Modules for the Summit X480 Series Switches 170
Versatile Interface Modules for the Summit X650 Series Switches 173
Optional Ports for the Summit $\times 460$ Series Switches 177
Summit $\times 460$ Series Stacking Modules 180
Optional Ports for the $\times 460-G 2$ Series Switches 180
VIM4-40G4X Versatile Interface Module for the Summit X670 Switch 184
Chapter 4: Site Preparation 186
Planning Your Site 186
Operating Environment Requirements 187
Rack Specifications and Recommendations 191
Evaluating and Meeting Cable Requirements. 192
Meeting Power Requirements 198
Following Applicable Industry Standards 201
Chapter 5: Building Stacks 202
Introduction to Stacking. 202
Planning to Create Your Stack. 214
Setting up the Physical Stack. 239
Chapter 6: Installing Summit Switches. 263
Safety Considerations for Installing Switches. 263
Pre-installation Requirements 264
Installing a Summit Family Switch 265
Installing Internal Power Supplies. 285
Connecting Network Interface Cables. 312
Performing Initial Management Tasks 313
Chapter 7: Installing Summit External Power Supplies, 317
Safety Considerations for Installing Power Supplies. 317
Pre-installation Requirements 318
Installing an EPS-150DC External Power Module (with EPS-T2). 318
Installing an EPS-160 External Power Module (with EPS-T). 323
Installing an EPS-500 External Power Supply Unit. 326
Installing an EPS-600LS External Power Module. 328
Installing an EPS-C2 Power Supply. 333
Installing an EPS-LD External Power Supply 341
Installing an STK-RPS-150PS Redundant Power Supply. 344
Installing an RPS-500p Redundant Power Supply. 349
Chapter 8: Installing Port Option Cards and VIMs 354
Installing a Summit Port Option Card. 354
Installing an Option Card in Slot B of a Summit X460 Series Switch. 357
Installing a Versatile Interface Module in a Summit $\times 460, \times 480, \times 650$, or $\times 670$ Series Switch. 358
Installing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch. 360
Chapter 9: Replacing AC Power Supplies 362
Replacing a Summit 300 W AC Power Supply. 362
Replacing a Summit 715 W AC Power Supply. 364
Replacing a Summit 450 W or 550 W AC Power Supply 366
Replacing a Summit 750 W AC Power Supply. 368
Replacing a Summit 850 W AC Power Supply. 372
Replacing a Summit 1100 W AC Power Supply. 374
Removing an EPS-LD or EPS-500 Power Supply. 376
Removing an EPS-160 Power Supply from an EPS-T 376
Removing an EPS-600LS Power Module. 377
Removing an STK-RPS-150PS Redundant Power Supply. 377
Chapter 10: Replacing DC Power Supplies 378
Replacing a Summit 300 W DC Power Supply 378
Replacing a Summit 450 W or 550 W DC Power Supply 384
Replacing a Summit 850 W DC Power Supply. 391
Removing an EPS-150DC Power Module from an EPS-T2 Tray. 395
Chapter 11: Replacing Fan Modules. 396
Pre-Installation Requirements 396
Airflow Direction Requirements. 396
Replacing a Fan Module 396
Chapter 12: Replacing Port Option Cards and VIMs 398
Replacing a Stacking Module or Option Card in Slot B of a Summit X460 Series Switch. 398
Replacing an XGM3/XGM3S Series Port Option Card in a Summit X460 Series Switch 399
Replacing a Versatile Interface Module (VIM) in a Summit X480, X650 or X670 Series Switch 400
Replacing an XGM or XGM2 Series Port Option Card 402
Replacing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch 403
Chapter 13: Removing Summit Switches 405
Removing an AC Power Supply 405
Removing a DC Power Supply. 406
Removing a Switch from a Rack 407
Appendix A: Safety Information 409
Considerations Before Installing 409
General Safety Precautions 410
Maintenance Safety 411
Cable Routing for LAN Systems. 411
Installing Power Supply Units and Connecting Power 412
Selecting Power Supply Cords. 413
Battery Replacement and Disposal 414
Battery Warning - Taiwan 414
Fiber Optic Ports and Optical Safety 414
Sicherheitshinweise 415
Überlegungen vor der Installation 416
Allgemeine Sicherheitshinweise. 416
Sicherheit bei Wartungsarbeiten 417
Kabelverlegung für LAN-Systeme 417
Installation der Netzteile und Netzanschluss 418
Auswahl der Netzkabel. 420
Wechseln und Entsorgen der Batterie. 420
LWL-Ports und optische Sicherheit 420
Konformität von GBIC, SFP (Mini-GBIC), QSFP+, XENPAK und XFP 421
Mögliche Netzanschlussgerät- und Lüftereinsatz-Konfigurationen für X770-32a 422
Appendix B: Technical Specifications 424
Summit X150 Series Switches Technical Specifications 425
Summit X250e Series Switches Technical Specifications. 429
Summit X350 Series Switches Technical Specifications. 436
Summit X430 Series Switches Technical Specifications 439
Summit $\times 440$ Series Switches Technical Specifications 444
Summit $\times 450$ Series Switches Technical Specifications 454
Summit $\times 450$ a Series Switches Technical Specifications. 456
Summit $\times 450$ e Series Switches Technical Specifications, 462
Summit $\times 450-G 2$ Series Switches Technical Specifications 466
Summit $\times 460$ Series Switches Technical Specifications 472
Summit $\times 460-G 2$ Series Switches Technical Specifications. 479
Summit $\times 480$ Series Switches Technical Specifications 487
Summit X650 Series Switches Technical Specifications 499
Summit X670 Series Switches Technical Specifications 509
Summit X670-G2 Series Switches Technical Specifications 515
Summit $\times 770$ Series Switches Technical Specifications. 519
STK-RPS-150PS and RPS Shelves Technical Specifications 523
Summit 300 W Power Supplies Technical Specifications 525
Summit 350 W Power Supplies Technical Specifications. 527
Summit 450 W Power Supplies Technical Specifications. 528
Summit 550 W Power Supplies Technical Specifications. 530
Summit 550 W Power Supplies for X670-G2 Switches 531
Summit 715 W Power Supplies Technical Specifications. 533
Summit 750 W Power Supplies Technical Specifications. 534
Summit 850 W Power Supplies Technical Specifications. 535
Summit 1100 W Power Supplies Technical Specifications 536
Summit External Power Supplies Technical Specifications. 537
EPS-C2 Redundant Power Supply Technical Specifications 541
RPS-500p Redundant Power Supply Technical Specifications 542
Power Cord Requirements for AC-Powered Switches and AC Power Supplies 543
Console Connector Pinouts. 544
Taiwan Warnings 546
Japan (VCCI Class A) 546
Korea EMC Statement 547
Glossary. 548
Index 552

Preface

This guide provides the instructions and supporting information needed to install the following Extreme Networks ${ }^{\circ}$ Summit ${ }^{\circ}$ family switches:

- Summit X150 Series Switches on page 13
- Summit $\times 250$ e Series Switches on page 18
- Summit X350 Series Switches on page 31
- Summit $\times 430$ Series Switches on page 36
- Summit X440 Series Switches on page 42
- Summit X 450 , $\times 450$ a, and $X 450$ e Series Switches on page 66
- Summit X450-G2 Series Switches on page 88
- Summit X460 Series Switches on page 99
- Summit X460-G2 Series Switches on page 107
- Summit X480 Series Switches on page 121
- Summit X650 Series Switches on page 126
- Summit X670 Series Switches on page 129
- Summit X670-G2 Series Switches on page 135
- Summit $\times 770$ Series Switches on page 139

The guide includes information about site preparation, switch functionality, and switch operation.

Audience

This guide is intended for use by network administrators responsible for installing and setting up network equipment. It assumes a basic working knowledge of:

- Local area networks (LANs)
- Ethernet concepts
- Ethernet switching and bridging concepts
- Routing concepts
- SNMP (Simple Network Management Protocol)
- Basic equipment installation procedures

See the ExtremeXOS 22.3 User Guide and the ExtremeXOS 22.3 Command Reference Guide for information about configuring Summit switches.

Note
If the information in an installation note or release note shipped with your Extreme Networks equipment differs from the information in this guide, follow the installation or release note.

Conventions

This section discusses the conventions used in this guide.

Text Conventions

The following tables list text conventions that are used throughout this guide.

Table 1: Notice Icons

Icon	Notice Type	Alerts you to...
	General Notice	Helpful tips and notices for using the product.
	Note	Important features or instructions.
Nexu	Caution	Risk of personal injury, system damage, or loss of data.
	Newning	Risk of severe personal injury.

Table 2: Text Conventions

Convention	Description
Screen displays	This typeface indicates command syntax, or represents information as it appears on the screen.
The words enter and type	When you see the word "enter" in this guide, you must type something, and then press the Return or Enter key. Do not press the Return or Enter key when an instruction simply says "type."
[Key] names	Key names are written with brackets, such as [Return] or [Esc]. If you must press two or more keys simultaneously, the key names are linked with a plus sign (+). Example: Press [CtrI]+[Alt]+[Del]
Words in italicized type	Italics emphasize a point or denote new terms at the place where they are defined in the text. Italics are also used when referring to publication titles.

Platform-Dependent Conventions

Unless otherwise noted, all information applies to all platforms supported by ExtremeXOS ${ }^{\bullet}$ software, which are the following:

- ExtremeSwitching ${ }^{\circ}$ switches
- Summit ${ }^{\bullet}$ switches
- SummitStack ${ }^{\text {TM }}$

When a feature or feature implementation applies to specific platforms, the specific platform is noted in the heading for the section describing that implementation in the ExtremeXOS command documentation (see the Extreme Documentation page at http://
documentation.extremenetworks.com). In many cases, although the command is available on all
platforms, each platform uses specific keywords. These keywords specific to each platform are shown in the Syntax Description and discussed in the Usage Guidelines sections.

Terminology

When features, functionality, or operation is specific to a switch family, such as ExtremeSwitching ${ }^{\text {Tm }}$ or Summit ${ }^{\ominus}$, the family name is used. Explanations about features and operations that are the same across all product families simply refer to the product as the switch.

Providing Feedback to Us

We are always striving to improve our documentation and help you work better, so we want to hear from you! We welcome all feedback but especially want to know about:

- Content errors or confusing or conflicting information.
- Ideas for improvements to our documentation so you can find the information you need faster.
- Broken links or usability issues.

If you would like to provide feedback to the Extreme Networks Information Development team about this document, please contact us using our short online feedback form. You can also email us directly at internalinfodev@extremenetworks.com.

Getting Help

If you require assistance, contact Extreme Networks using one of the following methods:

- GTAC (Global Technical Assistance Center) for Immediate Support
- Phone: 1-800-998-2408 (toll-free in U.S. and Canada) or +1 408-579-2826. For the support phone number in your country, visit: www.extremenetworks.com/support/contact
- Email: support@extremenetworks.com. To expedite your message, enter the product name or model number in the subject line.
- GTAC Knowledge - Get on-demand and tested resolutions from the GTAC Knowledgebase, or create a help case if you need more guidance.
- The Hub - A forum for Extreme customers to connect with one another, get questions answered, share ideas and feedback, and get problems solved. This community is monitored by Extreme Networks employees, but is not intended to replace specific guidance from GTAC.
- Support Portal - Manage cases, downloads, service contracts, product licensing, and training and certifications.

Before contacting Extreme Networks for technical support, have the following information ready:

- Your Extreme Networks service contract number and/or serial numbers for all involved Extreme Networks products
- A description of the failure
- A description of any action(s) already taken to resolve the problem
- A description of your network environment (such as layout, cable type, other relevant environmental information)
- Network load at the time of trouble (if known)
- The device history (for example, if you have returned the device before, or if this is a recurring problem)
- Any related RMA (Return Material Authorization) numbers

Related Publications

ExtremeSwitching X8, ExtremeSwitching, and E4G Hardware Documentation

- E4G Series Routers Hardware Installation Guide
- Extreme Hardware/Software Compatibility and Recommendation Matrices
- Extreme Networks Pluggable Transceivers Installation Guide
- ExtremeSwitching X8 Series Switches Hardware Installation Guide
- ExtremeXOS 16.2 User Guide
- ExtremeXOS 16.2 Command Reference Guide
- ExtremeSwitching and Summit Switches: Hardware Installation Guide for Switches Using ExtremeXOS 21.1 or Later
- Environmental Guidelines for ExtremeSwitching Products

1
 Summit Switches

```
Overview of the Summit Switches
Summit X150 Series Switches
Summit X250e Series Switches
Summit X350 Series Switches
Summit X430 Series Switches
Summit X440 Series Switches
Summit X450, X450a, and X450e Series Switches
Summit X450-G2 Series Switches
Summit X460 Series Switches
Summit X460-G2 Series Switches
Summit X480 Series Switches
Summit X650 Series Switches
Summit X670 Series Switches
Summit X670-G2 Series Switches
Summit X770 Series Switches
Pluggable Interfaces for Summit Switches
```

The Summit switches are compact enclosures 1.75 inches high (1 U). Each switch model provides between 8 and 72 high-density copper or fiber optic ports operating at speeds up to 40 Gbps . Many models also provide combination copper/fiber uplink ports. PoE connections and options for adding 10Gbps or 40-Gbps uplink connections are available on some models.

Many Summit switches include high-speed stacking interfaces that allow you to connect up to eight switches into a single SummitStack management entity. Models are available for AC or DC power connection; all switches make provision for redundant power supplies. Most models have connections for optional external redundant power supplies: the Summit X450-G2 (PoE models), X460, X460-G2, X480, X650, X670, X670-G2, and X770 switches provide two bays for pluggable power supplies.

Most models are available in versions that are compliant with the Trade Agreements Act (TAA); these versions are identified by a -TAA suffix on the model number. Functionally, the TAA-compliant models are completely equivalent to the matching versions that are not TAA-compliant. In all feature descriptions, references to a specific Summit switch model also apply to the equivalent TAA-compliant model.

This document describes switches that are supported on ExtremeXOS version 16 and earlier. For information about other ExtremeSwitching and Summit switches, refer to the ExtremeSwitching and Summit Switches: Hardware Installation Guide for Switches Using ExtremeXOS 21.1 or Later.

The following sections contain general information about the switches:

- Summit X150 Series Switches on page 13
- Summit $\times 250$ e Series Switches on page 18
- Summit X350 Series Switches on page 31
- Summit X430 Series Switches on page 36
- Summit $\times 440$ Series Switches on page 42
- Summit $\mathrm{X450}$, $\times 450$ a, and X 450 e Series Switches on page 66
- Summit X450-G2 Series Switches on page 88
- Summit $\times 460$ Series Switches on page 99
- Summit X460-G2 Series Switches on page 107
- Summit $\times 480$ Series Switches on page 121
- Summit X650 Series Switches on page 126
- Summit X670 Series Switches on page 129
- Summit X670-G2 Series Switches on page 135
- Summit $\times 770$ Series Switches on page 139

Overview of the Summit Switches

The following sections describe the Summit switches and summarize the features available in each series.

Model numbers for the switches are in the following format:
<Series>-<number of front-panel I/O ports><port type><internal power supply type>

- The number of ports ranges from 8 to 72.
- The port type can be t (copper), p (copper providing PoE (Power over Ethernet)), q (QSFP+), or x (fiber).
- For models with integral power supplies, the power supply type can be AC (no designation) or DC.

Models with pluggable power supplies can accommodate either AC or DC supplies and have no power designation in their model numbers.
Note
See the ExtremeXOS 22.3 User Guide and the ExtremeXOS 22.3 Command Reference Guide
for feature-specific information about the Summit switches and for information regarding
switch configuration.

Combination Ports and Failover

Summit switches provide 2, 4, or 12 uplink ports implemented as combination ports that pair a copper port using RJ45 connectors with an optical port using LC connectors.

The copper port operates as an autonegotiating 10/100/1000BASE-T port. The optical port allows Gigabit Ethernet uplink connections through Extreme Networks small form factor pluggable (SFP) interface modules. See the individual switch descriptions for the port numbers of the combination ports on each switch model.

Summit switches support automatic failover from an active fiber port to a copper backup or from an active copper port to a fiber port. If one of the uplink connections fails, the Summit uplink connection automatically fails over to the second connection. To set up a redundant link on a combination port, connect the active 1000BASE-T and fiber links to both the RJ45 and SFP interfaces of that port.

Gigabit Ethernet uplink redundancy on the Summit switches follows these rules:

- With both the SFP and 1000BASE-T interfaces connected on a combination port, only one interface can be activated. The other is inactive.
- If only one interface is connected, the switch activates the connected interface.
- The switch determines whether the port uses the fiber or copper connection based on the order in which the connectors are inserted into the switch. When the switch senses that an SFP and a copper connector are inserted, the switch enables the uplink redundancy feature. For example, if you first connect copper ports x and y on a switch, and then insert SFPs into ports x and y, the switch assigns the copper ports as active ports and the fiber ports as redundant ports.

Hardware identifies when a link is lost and responds by swapping the primary and redundant ports to maintain stability. After a failover occurs, the switch keeps the current port assignment until another failure occurs or a user changes the assignment using the CLI. For more information about configuring automatic failover on combination ports, see the ExtremeXOS 22.3 User Guide.

Summit X150 Series Switches

The Summit X150 series switches provide 24 or 48 fixed 10/100BASE-T Ethernet ports that deliver highdensity copper connectivity at 2.4 Gbps or 4.8 Gbps.

Models are available with PoE and without PoE. Each Summit X150 series switch has two combination ports that provide 10/100/1000 BASE-T or SFP connectivity for 2 Gbps of copper or fiber connectivity. A serial console port on the front panel allows you to connect a terminal and perform local management. On the back of the switch, an Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations.

The rear panel of the switch provides an AC power input socket and a redundant power connector. The internal power supply operates from 100 VAC to 240 VAC. The switch automatically adjusts to the supply voltage. The redundant power connector allows you to connect the switch to the EPS-160 or EPS-500 external power supply. When a compatible external power supply is used with the Summit X150 series switch, the internal and external power supplies are fully fault tolerant and load-sharing. If one power supply fails, the other power supply will provide sufficient power to operate the switch.

The Summit X150e series switches include the following switch models:

- Summit X150-24t Switch Ports and Slots on page 14
- Summit X150-24t-TAA switch
- Summit X150-24p Switch Ports and Slots on page 15
- Summit X150-24p-TAA switch
- Summit X150-48t Switch Ports and Slots on page 16
- Summit X150-48t-TAA switch

Note

In the descriptions that follow, references to a Summit X150 series model number also apply to the equivalent TAA-compliant switch version.

Summit X150 series switches require an ExtremeXOS version of at least 12.0.2.25 but not greater than 15.3.x.

Summit X150-24t Switch Ports and Slots

The front panel of the Summit X150-24t switch includes:

- Twenty-four fixed autosensing 10/100BASE-T ports (ports 1-24) that provide 2.4 Gbps of highdensity copper connectivity.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X150 Series Switch LEDS on page 17.

- Serial console port used to connect a terminal and perform local management.

Figure 1: Summit X150-24t Switch Front Panel
The rear panel of the Summit X150-24t switch (shown in Figure 2 on page 15) includes:

- Ethernet management port with associated LEDs .
- Redundant power input connector for optional connection to the EPS-160 External Power Module.

See EPS-160 External Power Module (with EPS-T) on page 150 for more information. The connecting redundant power supply cable is shipped with the EPS-160 unit.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 2: Summit X150-24t Switch Rear Panel

Summit X150-24p Switch Ports and Slots

The front panel of the Summit X150-24p switch includes:

- Twenty-four fixed autosensing 10/100BASE-T PoE ports (ports 1-24). In addition to 4 Gbps of highdensity copper connectivity, these ports also provide a full 15.4 Watts of PoE per port.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Fail over on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X150 Series Switch LEDs on page 17.

- Serial console port used to connect a terminal and perform local management.

Figure 3: Summit X150-24p Switch Front Panel
The rear panel of the Summit X150-24p switch includes:

- Ethernet management port with associated LEDs.
- Redundant power input connector for optional connection to the EPS-500 External Power Supply (Model No. 10911) with full PoE power support.

The connecting redundant power supply cable is shipped with the EPS-500 unit. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 4: Summit X150-24p Switch Rear Panel

Summit X150-48t Switch Ports and Slots

The front panel of the Summit X150-48t switch includes:

- Forty-eight fixed autosensing 10/100BASE-T ports (ports 1-48) that provide 4.8 Gbps of highdensity copper connectivity.
- Two combination ports (ports 49-50) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X150 Series Switch LEDs on page 17.

- Serial console port used to connect a terminal and perform local management.

Figure 5: Summit X150-48t Switch Front Panel
The rear panel of the Summit X150-48t switch (Figure 6 on page 17) includes:

- Management port with associated LEDs.
- Redundant power input connector for optional connection to the EPS-160 External Power Module.

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160
External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 6: Summit X150-48t Switch Rear Panel

Summit X150 Series Switch LEDs

The following sections describe the meanings of the LEDs on Summit X150 switches.
LEDs on the Summit X150 Series Switches

Table 3: Front Panel

Label or Type	Color/State	Meaning
MGMT	Blinking green (fast)	Power-on self-test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Blinking green (slow)	Normal operation.
	Blinking amber	Switch diagnostics are running. or System is disabled. POST failed or system overheated.
	Off	No external power attached.
FAN	Steady green	Normal operation.
	Blinking amber	Fan failure. Switch will continue to operate unless it overheats.
	Off	No power.
PSU-I (Internal power supply)	Steady green	Normal operation.
	Blinking amber	Failure.
	Off	No power.
PSU-E (External power supply)	Steady green	Normal operation.
	Blinking amber	Failure.
	Off	No external power attached.
Port number 1-24 or 1-48	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.
$\begin{aligned} & \text { Port number } \\ & 25,26 \text { or } 49,50 \\ & \text { (Shared ports) } \end{aligned}$	Steady green	Link is OK.
	Blinking green	Activity.
	Off	Link is not present, or port is disabled.

Table 4: Additional Port LED Meanings for PoE Switch: Summit X150-24p

Label or Type	Color/State	Meaning
All front-panel ports	Steady green	Link OK; port is not powered.
	Steady amber	Link is OK; port is powered; no traffic.
	Blinking green	Link is OK and transmitting packets; port is not powered.
	Blinking amber	Link is OK and transmitting packets; port is powered.
	Slow blinking amber	No link, or disabled port; port is powered.
	Alternating amber and green	Port has a power fault.
	Off	Port is not powered, has no link, or is disabled.

Table 5: Rear Panel

Label or Type	Color/State	Meaning
Management Port	Right LED: Steady green	Link is OK.
	Left LED: Blinking green	Activity.
	Both LEDs off	Link is not present.

Summit X250e Series Switches

The Summit X250e series switches provide 24 or 48 Ethernet ports that deliver high-density fast Ethernet connectivity using fixed 10/100/1000BASE-T ports or installable small form pluggable (SFP) optical modules.

Fixed-port models are available either with or without PoE. Each Summit X250e series switch has two combination ports that provide 10/100/1000 BASE-T or SFP connectivity for 2 Gbps of copper or fiber connectivity. A serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations.

On the back of the switch, two high-speed stacking ports allow you to combine multiple units into a single SummitStack management entity. The rear panel also provides an AC or DC power input socket and a redundant power connector. (See specific switch descriptions for more information about the power options.) The switch automatically adjusts to the supply voltage. The redundant power connector allows you to connect the switch to the EPS-160, EPS-500, or EPS-150DC external power supply. When a compatible external power supply is used with the Summit X250e series switch, the internal and external power supplies are fully fault tolerant and load-sharing. If one power supply fails, the other power supply will provide sufficient power to operate the switch.

The Summit $\times 250$ e series switches include the following models:

- Summit X250e-24t Switch Ports and Slots on page 19
- Summit X250e-24t-TAA switch
- Summit X250e-24tDC Switch Ports and Slots on page 20
- Summit X250e-24tDC-TAA switch
- Summit X250e-24x Switch Ports and Slots on page 21
- Summit X250e-24x-TAA switch
- Summit $\times 250$ e-24xDC Switch Ports and Slots on page 22
- Summit X250e-24xDC-TAA switch
- Summit X250e-24p Switch Ports and Slots on page 24
- Summit X250e-24p-TAA switch
- Summit $\times 250$ e-48t Switch Ports and Slots on page 25
- Summit X250e-48t-TAA switch
- Summit $\times 250$ e-48tDC Switch Ports and Slots on page 26
- Summit X250e-48tDC-TAA switch
- Summit $\times 250$ e-48p Switch Ports and Slots on page 27
- Summit X250e-48p-TAA switch

Note
In the descriptions that follow, references to a Summit X250e series model number also apply to the equivalent TAA-compliant switch version.

Summit X250e series switches require an ExtremeXOS version of at least 12.0.1.11 but not greater than 15.3.x.

Summit X250e-24t Switch Ports and Slots

The front panel of the Summit X250e-24t switch includes:

- Twenty-four fixed autosensing 10/100BASE-T ports (ports 1-24) that provide 2.4 Gbps of highdensity copper connectivity.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 7: Summit X250e-24t Switch Front Panel
The rear panel of the Summit X250e-24t switch (shown in Figure 8 on page 20) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-160 External Power Module.

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160 External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 8: Summit X250e-24t Switch Rear Panel

Summit X250e-24tDC Switch Ports and Slots

The front panel of the Summit X250e-24tDC switch includes:

- Twenty-four fixed autosensing 10/100BASE-T ports (ports 1-24) that provide 2.4 Gbps of highdensity copper connectivity.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDS on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 9: Summit X250e-24tDC Switch Front Panel
The rear panel of the Summit $\times 250$ e-24tDC switch (shown in Figure 10 on page 21) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-150DC External Power Module (Model No. 10909).

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-150DC External Power Module (with EPS-T2) on page 149 for more information.

- DC power input socket.

The internal power supply operates from -36 VDC to -72 VDC.

- Grounding lug.
Note
For centralized DC power connection, this product is intended to be installed in a restricted
access location (such as a dedicated equipment room, equipment closet, or central office) in
accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA
70 .

Figure 10: Summit X250e-24tDC Switch Rear Panel

Summit X250e-24x Switch Ports and Slots

The front panel of the Summit X250e-24x switch includes:

- Twenty-four 100BASE-FX ports (ports 1-24) that provide 2.4 Gbps of high-density fiber connectivity.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X250e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 11: Summit X250e-24x Switch Front Panel
The rear panel of the Summit $\times 250 e-24 x$ switch (shown in Figure 12 on page 22) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for use with the EPS-160 External Power Module.

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160 External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 12: Summit X250e-24x Switch Rear Panel

Summit X250e-24xDC Switch Ports and Slots

The front panel of the Summit X250e-24xDC switch includes:

- Twenty-four 100BASE-FX ports (ports 1-24) that provide 2.4 Gbps of high-density fiber connectivity.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 13: Summit X250e-24xDC Switch Front Panel

The rear panel of the Summit X250e-24xDC switch (Figure 14 on page 24) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for use with the EPS-150DC External Power Module (Model No. 10909).

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-150DC External Power Module (with EPS-T2) on page 149 for more information.

- DC power input socket.

The internal power supply operates from -36 VDC to -72 V DC.

- Grounding lug.

Note

For centralized DC power connection, this product is intended to be installed in a restricted access location (such as a dedicated equipment room, equipment closet, or central office) in accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA 70.

Figure 14: Summit X250e-24xDC Switch Rear Panel

Summit X250e-24p Switch Ports and Slots

The front panel of the Summit X250e-24p switch includes:

- Twenty-four fixed autosensing 10/100BASE-T PoE ports (ports 1-24). In addition to 2.4 Gbps of high-density copper connectivity, these ports also provide a full 15.4 Watts of PoE per port.
- Two combination ports (ports 25-26) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X250e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 15: Summit X250e-24p Switch Front Panel
The rear panel of the Summit X250e-24p switch (shown in Figure 16 on page 25) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for use with the EPS-500 External Power Supply (Model No. 10911) with full PoE power support.

The connecting redundant power supply cable is shipped with the EPS-500 unit. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 16: Summit X250e-24p Switch Rear Panel

Summit X250e-48t Switch Ports and Slots

The front panel of the Summit $\times 250 \mathrm{e}-48$ t switch includes:

- Forty-eight fixed autosensing 10/100BASE-T ports (ports 1-48) that provide 4.8 Gbps of highdensity copper connectivity.
- Two combination ports (ports 49-50) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 17: Summit X250e-48t Switch Front Panel
The rear panel of the Summit X250e-48t switch (Figure 18 on page 26) includes:

- Management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-160 External Power Module.

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160 External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 18: Summit X250e-48t Switch Rear Panel

Summit X250e-48tDC Switch Ports and Slots

The front panel of the Summit X250e-48tDC switch includes:

- Forty-eight fixed autosensing 10/100BASE-T ports (ports 1-48) that provide 4.8 Gbps of highdensity copper connectivity.
- Two combination ports (ports 49-50) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 19: Summit X250e-48tDC Switch Front Panel

The rear panel of the Summit X250e-48tDC switch (shown in Figure 20 on page 27) includes:

- Management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for use with the EPS-150DC External Power Module (Model No. 10909).

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-150DC External Power Module (with EPS-T2) on page 149 for more information.

- DC power input socket.

The internal power supply operates from -36 VDC to -72 VDC.

- Grounding lug.

Note

For centralized DC power connection, this product is intended to be installed in a restricted access location (such as a dedicated equipment room, equipment closet, or central office) in accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA 70.

Figure 20: Summit X250e-48tDC Switch Rear Panel

Summit X250e-48p Switch Ports and Slots

The front panel of the Summit X250e-48p switch includes:

- Forty-eight fixed autosensing 10/100BASE-T PoE ports (ports 1-48). In addition to 4.8 Gbps of highdensity copper connectivity, these ports provide a full 15.4 Watts of PoE per port when used with the EPS-600LS External Power Module.
- Two combination ports (ports 49-50) using RJ45 connectors and SFPs to provide 2 Gbps of copper or fiber connectivity.

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 250$ e Series Switch LEDs on page 29.

- Stack number indicator showing the position of this switch in a stacked configuration.
- Serial console port used to connect a terminal and perform local management.

Figure 21: Summit X250e-48p Switch Front Panel
The rear panel of the Summit X250e-48p switch (shown in Figure 22 on page 28) includes:

- Ethernet management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for use with one or more EPS-600LS External Power Modules (Model No. 10913) installed in an EPS-C chassis (Model No. 10912).

The connecting redundant power supply cable is shipped with the EPS-C chassis. The PoE capability of the Summit X250e-48p switch varies depending on the number of external power modules in use. For more information, see EPS-600LS External Power Module on page 152.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 22: Summit X250e-48p Switch Rear Panel

Summit X250e-48p Power Supplies

The Summit X250e-48p switch is powered by both an internal power supply and an optional external redundant power supply system.

Internal Power Supply

The Summit X250e-48p internal power supply can provide 370 W of PoE power, as follows:

- In a 24-port configuration, it provides 15.4 W to each port.
- In a 48-port configuration or any combination of ports where total PoE power does not exceed 370 watts, it provides 7.7 W to each port.

If the total system demands exceed this power limit, you can specify one of the following:

- Port priorities to identify which ports should be ranked higher when allocating power
- Port disconnect precedence to specify the method of shutting off ports when not enough PoE power is available

Note

For a detailed discussion of these concepts, see the Power over Ethernet section in the ExtremeXOS 22.3 User Guide.

External Power Supplies

The EPS-600LS External Power Module provides optional redundant power for the Summit X250e-48p switch.

Through the redundant power input connector on the rear panel, the switch can be powered by one, two, or three external power modules installed in the EPS-C External Power Supply Chassis.

The PoE capability of the Summit X250e-48p varies depending on the number of external power modules in use. The following table summarizes the PoE power behavior for the Summit X250e-48p switch based on the number of power supply modules in use.

Internal Power Supply Status	EPS-600LS (1x)	EPS-600LS (2x)	EPS-600LS (3x)	External Power Supply/ Chassis Failed/ Disconnected
Internal power supply: Power on	370 W of redundant power	740 W of external power only; internal power supply disabled	740 W of external power only with 2:1 redundancy; internal power supply disabled	370 W of internal power only
Internal power supply: Power Failure	370 W of external power only	740 W of external power only	740 W of external power only with 2:1 redundancy	No PoE power

For specifications and installation instructions for the external power module, see EPS-600LS External Power Module on page 152.

Summit X250e Series Switch LEDs

The following sections describe the meanings of the LEDs on Summit X250e switches.

LEDs on the Summit $\times 250$ e Series Switches

Table 6: Front Panel

Label or Type	Color/State	Meaning
MGMT	Blinking green (fast)	Power-on self-test (POST) in progress
	Steady green	POST passed. System is booting image.
	Blinking green (slow)	Normal operation.
	Blinking amber	Switch diagnostics are running. or System is disabled. POST failed or system overheated.
	Off	No external power attached
FAN	Steady green	Normal operation
	Blinking amber	Fan failure. Switch will continue to operate unless it overheats.
	Off	No power
PSU-I (Internal power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
PSU-E (External power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No external power attached
Port number 1-24 or 1-48	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.
Port number 25,26 or 49,50 (Shared ports)	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.
Stack 1, Stack 2	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.
Stack Number Indicator	Off	This switch is not in stacking mode.
	Top half of number blinking	This switch is the stack master.
	Lower half of number blinking	This switch is the stack backup.
	Number lights steadily	This switch is a standby switch (neither the master nor the backup).

Table 7: Additional Port LED Meanings for PoE Switches: Summit X250e-24p \& Summit X250e-48p

Label or Type	Color/State	Meaning
All front-panel ports	Steady green	Link OK. port not powered.
	Steady amber	Link OK, port is powered, no traffic
	Blinking green	Link OK, transmitting packets, port not powered.
	Blinking amber	Link OK, transmitting packets, port is powered.
	Slow blinking amber	No link or disabled port, port is powered
	Alternating amber and green	Port has a power fault.
	Off	Port is not powered, has no link, or is disabled.

Table 8: Rear Panel

Label or Type	Color/State	Meaning
Management Port	Right LED: Steady green	Link OK
	Left LED: Blinking green	Activity
	Both LEDs off	Link is not present.
Stack Port 1, Stack Port 2	Steady green	Link OK
	Blinking green	Activity
	Off	No link

Summit X350 Series Switches

The Summit X350 series switches provide 24 or 48 Ethernet ports that deliver high-density fast Ethernet connectivity using fixed 10/100/1000BASE-T ports.

Each Summit X350 series switch has four combination ports that provide 10/100/1000 BASE-T or SFP connectivity for 2 Gbps of copper or fiber connectivity. A serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations.

The rear panel of the switch has an option slot to accommodate one of the following Summit port option cards:

- Summit XGM2-2xf option card, which allows you to add one or two 10-gigabit XFP modules.
- Summit XGM2-2xn option card, which allows you to add one or two 10-gigabit XFP modules.
- Summit XGM2-2bt option card, which allows you to add one or two fixed 10GBASE-T ports.
- Summit XGM2-2sf option card, which allows you to add one or two 10-gigabit SFP+ modules.

For option card installation instructions, see Installing Port Option Cards and VIMs on page 354.

Power connectors on the rear panel of the switch include an AC power input socket and a redundant power connector. The internal AC power supply operates from 100 VAC to 240 VAC. The switch automatically adjusts to the supply voltage. The redundant power connector allows you to connect the switch to the EPS-500 external power supply. When a compatible external power supply is used with the Summit X350 series switch, the internal and external power supplies are fully fault tolerant and load-sharing. If one power supply fails, the other power supply provides sufficient power to operate the switch.

The Summit $\times 350$ series switches include the following models:

- Summit X350-24t Switch Ports and Slots on page 32
- Summit X350-24t-TAA switch
- Summit X350-48t Switch Ports and Slots on page 33
- Summit X350-48t-TAA switch

Note

In the descriptions that follow, references to a Summit X350 series model number also apply to the equivalent TAA-compliant switch version.

Summit X350 series switches require an ExtremeXOS version of at least 12.0.3.16 but not greater than 15.3.x.

Summit X350-24t Switch Ports and Slots

The front panel of the Summit X350-24t switch includes:

- Twenty fixed autosensing 10/100/1000BASE-T ports (ports 1-20) that provide 20 Gbps of highdensity copper connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPS, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X350 Series Switch LEDs on page 35.

- Serial console port used to connect a terminal and perform local management.

Figure 23: Summit X350-24t Switch Front Panel

The rear panel of the Summit X350-24t switch (as shown in Figure 24 on page 33) includes a slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 9: Port Option Cards for Summit X350 Series Switches

Option Card Model	Type of Added Ports	For More Information, see ...
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

The rear panel of the Summit X350-24t switch also includes:

- Management port with associated LEDs.
- Redundant power input connector for optional connection to the EPS-500 External Power Module (Model No. 10907).

The connecting redundant power supply cable is shipped with the EPS-500 unit. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket.

The internal power supply operates from 100 VAC to 240 VAC.

Figure 24: Summit X350-24t Switch Rear Panel

Summit X350-48t Switch Ports and Slots

The front panel of the Summit X350-48t switch includes:

- Forty-four fixed autosensing 10/100/1000 BASE-T ports (ports 1-44) that provide 44 Gbps of highdensity copper connectivity.
- Four combination ports (ports 45-48) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 350$ Series Switch LEDs on page 35.

- Serial console port used to connect a terminal and perform local management.

Figure 25: Summit X350-48t Switch Front Panel
The rear panel of the Summit X350-48t switch includes a slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 10: Port Option Cards for Summit X350 Series Switches

Option Card Model	Type of Added Ports	For More Information, see ...
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

The rear panel of the Summit X350-48t switch also includes:

- Management port with associated LEDs.
- Redundant power input connector for optional connection to the EPS-500 External Power Supply Unit (Model No. 10911).

The connecting redundant power supply cable is shipped with the EPS-500 power supply. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket.

The internal power supply operates from 100 VAC to 240 VAC.

Figure 26: Summit X350-48t Switch Rear Panel

Summit $\times 350$ Series Switch LEDs

The following sections describe the meanings of the LEDs on Summit X350 switches.

Table 11: Front Panel

Label or Type	Color/State	Meaning
MGMT	Blinking green (fast)	Power-on self-test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Blinking green (slow)	Normal operation
	Blinking amber	Switch diagnostics are running. or System is disabled. POST failed or system overheated.
FAN	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
PSU-I (Internal power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
PSU-E (External power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No external power attached.

Table 12: Front-panel Port LEDs

Label or Type	Color/State	Meaning
Ethernet Ports $1-24$ or $1-48(21-24$ and 45 -48 are shared ports)	Steady green	Link OK
	Blinking green	Activity
	Off	Link is not present. or Port is disabled.

Table 13: Rear Panel

Label or Type	Color/State	Meaning
Management Port	Steady green	Link OK
	Blinking green	Activity
	Off	Link is not present.
	Steady green	Link OK
	Blinking green	Activity
	Off	Link down
XFP 10G Port (on installed option card)	Steady green	Link OK
	Blinking green	Activity
	Off	Link down

Summit X430 Series Switches

The Summit X430 series switches provide 8 , 24, or 48 Ethernet ports that deliver high-density fast Ethernet or Gigabit Ethernet connectivity using fixed 10/100/1000Base-T copper or POE+ ports, plus four 100/1000Base-X fiber ports via SFP modules on some models.

For all models, a serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations. The rear panel provides an AC power input socket.

The Summit $\times 430$ series switches include the following models:

- Summit X430-8p switch
- Summit X430-24t switch
- Summit X430-24p switch
- Summit X430-48t switch

Summit X430-24t and X430-48t switches require an ExtremeXOS version of at least 16.3 .2 but not greater than 16.x.

Summit X430-8p and X430-24p switches require an ExtremeXOS version of at least 15.5 .2 but not greater than 16.x.

Summit X430-8p Switch Ports and Slots

The front panel of the Summit $\times 430-8 p$ switch includes:

- Eight fixed autosensing 10/100/1000BASE-T ports (ports 1-8) that provide 8 Gbps of high-density copper connectivity. In addition, all of these ports (ports 1-8) also support the POE protocol IEEE802.af and POE+ protocol IEEE 802.at standard. Using the POE protocol, the switch can provide 15.4 Watts of power on a single port up to a total power budget of 60 Watts. Using the POE+ protocol, the switch can provide 30 Watts of power on a single port up to a total power budget of 60 Watts.

Note

Up to 90 watts of PoE power can be configured on the switch if it is used standalone and not in a rack.

- Two unpopulated 1000BASE-X SFP ports (ports 9-10) that provide 2 Gbps of fiber connectivity.

Note
All the eight 10/100/1000BASE-T ports and all of the 1000BASE-X SFP ports can be used simultaneously.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 430$ Series Switch LEDs on page 42.

Note

If you are desktop mounting a Summit X430-8p switches you must use the four rubber pads to maintain sufficient airflow around the unit See Installing Summit Switches in Desktop or Free-Standing Mode on page 280 for installation instructions.

Note

If you are rack mounting Summit X430-8p switches, you must use special "keep out" rack mounting hardware. Rack mounting hardware must be ordered separately and you must reserve at least 2 RU of space for the unit. For installation instructions, see Installing a Summit X430-8p or X440-8t Switch in a Rack on page 265.

Figure 27: Summit X430-8p Switch Front Panel

$1=$ Ethernet management port	$3=$ SFP ports
$2=10 / 100 / 1000 B A S E-$ T POE + ports	$4=$ Console port

The rear panel of the Summit X430-8p switch includes:

- AC power input socket

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 28: Summit X430-8p Switch Rear Panel
1 = AC power input connector

Summit X430-24t Switch Ports and Slots

The front panel of the Summit X430-24t switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity.
- Four unpopulated 1000BASE-X SFP ports (ports 25-28) that provide 4 Gbps of fiber connectivity.

Note

All of the 10/100/1000BASE-T ports and four 1000BASE-X SFP ports can be used simultaneously.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 430$ Series Switch LEDs on page 42.

Figure 29: Summit X430-24t Switch Front Panel

$1=$ Ethernet management port	$3=$ SFP ports
$2=10 / 100 / 1000 B A S E-T$ ports	$4=$ Console port

The rear panel of the Summit X430-24t switch (shown in Figure 30) includes:

- AC power input socket

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 30: Summit X430-24t Switch Rear Panel
1 = AC power input connector

Summit X430-24p Switch Ports and Slots

The front panel of the Summit X430-24p switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity. In addition, all of these ports (ports 1-24) also support the POE protocol IEEE802.af and POE+ protocol IEEE 802.at standard. Using the POE protocol, the switch can provide 15.4 Watts of power on a single port up to a total power budget of 370 Watts. Using the POE+
protocol, the switch can provide 30 Watts of power on a single port up to a total power budget of 370 Watts
- Four unpopulated 1000BASE-X SFP ports (ports 25-28) that provide 4 Gbps of fiber connectivity.

Note
All the twenty-four 10/100/1000BASE-T ports and all four of the 1000BASE-X SFP ports can be used simultaneously.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X430 Series Switch LEDs on page 42.

Figure 31: Summit X430-24p Switch Front Panel

1 = Ethernet management port	$3=$ SFP ports
$2=10 / 100 / 1000 B A S E-$ T POE + ports	$4=$ Console port

The rear panel of the Summit X430-24p switch (shown in Figure 32) includes:

- AC power input socket

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 32: Summit X430-24p Switch Rear Panel

```
1 = AC power input connector
```


Summit X430-48t Switch Ports and Slots

The front panel of the Summit X430-48t switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Four 1000BASE-X SFP ports (ports 49-52) that provide 4 Gbps of fiber connectivity.

Note
All the forty-eight 10/100/1000BASE-T ports and all four of the 1000BASE-X SFP ports can be used simultaneously.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 430$ Series Switch LEDs on page 42.

Figure 33: Summit X430-48t Switch Front Panel

1 = Ethernet management port	$3=10 / 100 / 1000$ BASE-T ports
2 = Console port	$4=$ SFP ports

The rear panel of the Summit X430-48t switch (shown in Figure 34) includes:

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 34: Summit X430-48t Switch Rear Panel

```
1 = AC power input connector
```


Summit X430 Series Switch LEDs

The following table describes the meanings of the LEDs on Summit X430 switches.

Table 14: X430 Front Panel LEDs

Label or Type	Color/State	Meaning
MGMT	Blinking green	Power-on self-test (POST) in progress.
	Steady green	POST passed. Normal operation.
	Blinking amber	System is disabled. POST failed or system overheated.
	Off	No external power attached.
FAN	Steady green	Normal operation, fan is good.
	Blinking amber	Fan failure. Switch will continue to operate unless it overheats.
	Off	No power
PSU (Internal power supply)	Steady green	Normal operation.
	Off	No power is attached/Power failure.
Port number 1-8 or 1 - 24 or 1-48	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Solid Amber (POE only)	POE delivering with Ethernet link OK.
	Fast Blinking Amber (POE only)	POE delivering and port is transmitting packets.
	Slow Blinking Amber (POE only)	POE fault detected.
	Off	Link is not present, or port is disabled.
Port number 9-10 or $\begin{aligned} & 25-28 \text { or } \\ & 49-52 \end{aligned}$ (SFP ports)	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.

Summit X440 Series Switches

The Summit X 440 series switches provide 8 , 24 , or 48 Ethernet ports that deliver high-density fast Ethernet or Gigabit Ethernet connectivity using fixed 10/100/1000BASE-T or 100/1000 BASE-X ports.

Additional ports on various models include the following:

Table 15: X440 Series Switches and Port Types

	$\begin{aligned} & \text { 10/100/1000BASE-T } \\ & \text { RJ45 } \end{aligned}$	$\begin{aligned} & \text { 10/100/1000BASE-T } \\ & \text { POE+ RJ45 } \end{aligned}$	100/1000BASE-X SFP	10G BASE-X SFP+
X440-8t	8		4 (unpopulated)	
X440-8p		8	4 (unpopulated)	
$\begin{array}{\|l\|} \mathrm{X} 440-24 \mathrm{t} \\ \mathrm{X} 440-24 \mathrm{tDC} \end{array}$	24 (four are combo ports)		4 (unpopulated combo ports)	
X440-24p		24 (four are combo ports)	4 (unpopulated combo ports)	
X440-24x	4 (four are combo ports)		24 (unpopulated) (four are combo ports)	
X440-L2-24t	24 (four are combo ports)		4 (unpopulated combo ports)	
X440-24t-10G	24		4 (unpopulated combo ports)	2 (unpopulated)
X440-24p-10G		24 (four are combo ports)	4 (unpopulated combo ports)	2 (unpopulated)
X440-24x-10G	4 (combo ports)		24 (unpopulated) (four are combo ports)	2 (unpopulated)
$\begin{array}{\|l\|} \hline \text { X440-48t } \\ \text { X440-48tDC } \end{array}$	48 (four are combo ports)		4 (unpopulated combo ports)	
X440-48p		48 (four are combo ports)	4 (unpopulated combo ports)	
X440-L2-48t	48 (four are combo ports)		4 (unpopulated combo ports)	
X440-48t-10G	48 (two are combo ports)		2 (unpopulated combo ports)	2 (unpopulated)
X440-48p-10G		48 (two are combo ports)	2 (unpopulated combo ports)	2 (unpopulated)

For all models, a serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations.

Most models have two high-speed stacking ports that allow you to combine multiple units into a single SummitStack management entity. On the 8-port models, the stacking ports are on the front panel. On the 24 and 48 port 10-G models, the SFP+ 10G ports on the front panel can be used as alternate stacking ports. On all other Summit X440 series switches (except the $\times 440-$ L2-24t and $\times 440-$ L2-48t which do not have stacking capability), the stacking ports are on the back panel. Stacking port locations are listed in the following table.

X440 Switch Type	Stacking Port type	Port Location
$8 p$ and 8t	High-speed stacking port	Front panel
$24 p, 24 t, ~ 24 t D C, ~ 24 x, ~ 48 p, ~ 48 t, ~$ $48 t D C$	High-speed stacking port	Rear panel
24p-10G, 24t-10G, 24x-10G 48p-10G, $48 t-10 G$	SFP+	Front panel

Note
The X440-L2-24t and the X440-L2-48t do not have stacking capability.

The rear panel provides an AC power input socket or DC input connector; 24-port and 48-port switch models also include a redundant power connector. The switch automatically adjusts to the supply voltage. The redundant power connector allows you to connect the switch to the EPS-C2 external power system. When a compatible external power supply is used with the Summit X440 series switch, the internal and external power supplies are fully fault tolerant. If one power supply fails, the other power supply will provide sufficient power to operate the switch.

Most Summit switches have fans that can change speeds depending upon operating conditions. See Summit $\times 440$ Series Switches Technical Specifications on page 444 for specifications.

The Summit X 440 series switches include the following models:

- Summit X440-8t Switch Ports and Slots on page 44
- Summit X440-8p Switch Ports and Slots on page 46
- Summit X440-24t Switch Ports and Slots on page 47
- Summit X440-24tDC Switch Ports and Slots on page 48
- Summit X440-24t-10G Switch Ports and Slots on page 49
- Summit X440-L2-24t Switch Ports and Slots on page 51
- Summit X440-24x Switch Ports and Slots on page 52
- Summit X440-24X-10G Switch Ports and Slots on page 53
- Summit X440-24p Switch Ports and Slots on page 54
- Summit X440-24p-10G Switch Ports and Slots on page 56
- Summit X440-48t Switch Ports and Slots on page 57
- Summit X440-48tDC Switch Ports and Slots on page 58
- Summit X440-48t-10G Switch Ports and Slots on page 59
- Summit X440-L2-48t Switch Ports and Slots on page 60
- Summit X440-48p Switch Ports and Slots on page 62
- Summit X440-48p-10G Switch Ports and Slots on page 63

The minimum required ExtremeXOS version for Summit X440 series switches varies by model. (See the Extreme Hardware/Software Compatibility and Recommendation Matrices for details.) The ExtremeXOS version cannot be greater than 16.x.

Summit X440-8t Switch Ports and Slots

The front panel of the Summit X440-8t switch includes:

- Eight fixed autosensing 10/100/1000BASE-T ports (ports 1-8) that provide 8 Gbps of high-density copper connectivity
- Four unpopulated SFP ports (ports 9-12) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Two high-performance stacking ports with associated LEDs
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X440 Series Switch LEDs on page 64.

- Stack number indicator.
Note
If you are desktop mounting a Summit X440-8t switch, you must use the four rubber pads to
maintain sufficient airflow around the unit See Installing Summit Switches in Desktop or Free-

Standing Mode on page 280 for installation instructions. \quad| Note |
| :--- |
| If you are rack mounting Summit X440-8t switches, you must use special "keep out" rack |
| mounting hardware. The rack mounting hardware is included with the unit. You must reserve |
| 3 RU of space for the installation. See Installing a Summit X430-8p or X440-8t Switch in a |
| Rack on page 265 for installation instructions. |

Figure 35: Summit X440-8t Switch Front Panel

1 = Ethernet management port	4 = Stack number indicator
$2=10 / 100 / 1000 B A S E-T$ ports	5 = Console port
$3=$ SFP ports	6 = Stacking Ports

The rear panel of the Summit X440-8t switch provides an AC power input socket. The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 36: Summit X440-8t Switch Rear Panel
1 = AC power input connector

Summit X440-8p Switch Ports and Slots

The front panel of the Summit X440-8p switch includes:

- Eight fixed autosensing 100/1000BASE-T PoE+ ports (ports 1-8). In addition to 8 Gbps of highdensity copper connectivity, these ports also supports the PoE+ IEEE 802.3a standard and provide up to 30 Watts of power per port up to a total power budget of 170 Watts.
- Four unpopulated SFP ports (ports 9-12) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Two high-performance stacking ports with associated LEDs.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDS on page 64.

- Stack number indicator.

Figure 37: Summit X440-8p Switch Front Panel

1 = Ethernet management port	4 = Stack number indicator
$2=10 / 100 / 1000 B A S E-T$ PoE ports	5 = Console port
$3=$ SFP ports	6 = Stacking Ports

The rear panel of the Summit X440-8t switch provides an AC power input socket. The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 38: Summit X440-8p Switch Rear Panel

```
1= AC power input connector
```


Summit X440-24t Switch Ports and Slots

The front panel of the Summit X440-24t switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

- Stack number indicator.

Figure 39: Summit X440-24t Switch Front Panel

1 = Ethernet management port	4 = Stack number indicator
$2=10 / 100 / 1000 B A S E-$ T ports	5 = Console port

3 = SFP ports	$6=$ Combination ports

The rear panel of the Summit X440-24t switch (shown in Figure 40 on page 48) includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module.

The connecting redundant power supply cable is shipped with the power module unit. For more information, see Installing an RPS-500p Redundant Power Supply on page 349 or Installing an EPSC2 Power Supply on page 333.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 40: Summit X440-24t Switch Rear Panel

1 = AC power input connectors	3 = Redundant power connector
2 = Stacking ports	

Summit X440-24tDC Switch Ports and Slots

The front panel of the Summit $\mathrm{X} 440-24 \mathrm{tDC}$ switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Interface Modules Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

- Stack number indicator.

Figure 41: Summit X440-24tDC Switch Front Panel

1 = LEDs	$4=$ Stack number indicator
$2=10 / 100 / 1000 B A S E-$ T ports	$5=$ Ethernet management port/Console port
3 = SFP ports	$6=$ Combination ports

The rear panel of the Summit $\times 440-24 t D C$ switch (shown in Figure 42 on page 49) includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module.

The connecting redundant power supply cable is shipped with the power module unit. For more information, see Installing an RPS-500p Redundant Power Supply on page 349 or Installing an EPSC2 Power Supply on page 333.

- DC power input connectors. The DC power supply operates at -48 V .

Figure 42: Summit X440-24tDC Switch Rear Panel

$1=$ DC power input connectors	3 = Redundant power connector
$2=$ Stacking ports	

Summit X440-24t-10G Switch Ports and Slots

The front panel of the Summit X440-24t-10G switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Two unpopulated SFP+ ports (ports 25 and 26) that provide 20 Gbps of fiber connectivity.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

Figure 43: Summit X440-24t-10G Switch Front Panel

1 = Ethernet management port	5 = Console port
$2=10 / 100 / 1000 B A S E-T$ ports	$6=$ Combination Ports
$3=$ SFP ports	$7=$ SFP+ ports
$4=$ Stack number indicator	

The rear panel of the Summit X440-24t-10G switch (Figure 44 on page 50) includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module.

The connecting redundant power supply cable is shipped with the power module unit. For more information, see Installing an RPS-500p Redundant Power Supply on page 349 or Installing an EPSC2 Power Supply on page 333.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 44: Summit X440-24t-10G Switch Rear Panel

1 = AC power input connector	2 = Redundant power connector

Summit X440-L2-24t Switch Ports and Slots

The front panel of the Summit X440-L2-24t switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDS on page 64.

Figure 45: Summit X440-L2-24t Switch Front Panel

$1=$ Ethernet management port	$4=$ Console port
$2=10 / 100 / 1000 B A S E-T$ ports	$5=$ Combination ports
$3=$ SFP ports	

The rear panel of the Summit X440-L2-24t switch (shown in Figure 46 on page 52) includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module.

The connecting redundant power supply cable is shipped with the power module unit. For more information, see Installing an RPS-500p Redundant Power Supply on page 349 or Installing an EPSC2 Power Supply on page 333 .

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 46: Summit X440-L2-24t Switch Rear Panel

```
1 = AC power input connector
2 = Redundant power connector
```


Summit X440-24x Switch Ports and Slots

The front panel of the Summit X440-24x switch includes:

- Twenty-four unpopulated SFP ports (ports 1-24) that provide 24 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Four autosensing 10/100/1000BASE-T ports (ports 21-24) that provide 4 Gbps of high-density copper connectivity.

These ports are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X440 Series Switch LEDs on page 64.

- Stack number indicator.

Figure 47: Summit X440-24x Switch Front Panel

1 = Ethernet management port	4 = Stack number indicator
$2=$ SFP ports	5 = Console port

$3=10 / 100 / 1000 B A S E-T$ ports	$6=$ Combination ports

The rear panel of the Summit $\times 440-24 \times$ switch includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 48: Summit X440-24x Switch Rear Panel

1 = AC power input connectors	3 = Redundant power connector
2 = Stacking ports	

Summit X440-24x-10G Switch Ports and Slots

The front panel of the Summit X440-24x-10G switch includes:

- Twenty-four unpopulated SFP ports (ports 1-24) that provide 24 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.
- Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port.

For more information about combination ports, see Combination Ports and Failover on page 12
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Four autosensing 10/100/1000BASE-T ports (ports 21-24) that provide 4 Gbps of high-density copper connectivity.

These ports are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

- Two unpopulated SFP+ ports (ports 25 and 26) that provide 20 Gbps of fiber connectivity.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDS on page 64.

Figure 49: Summit X440-24x-10G Switch Front Panel

$1=$ Ethernet management port	$5=$ Console port
$2=$ SFP ports	$6=$ Combination ports
$3=10 / 100 / 1000 B A S E-T$ ports	$7=$ SFP + ports
$4=$ Stack number indicator	

The rear panel of the Summit X440-24x-10G switch includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 50: Summit X440-24x-10G Switch Rear Panel

$1=A C$ power input connectors	2 = Redundant power connector

Summit X440-24p Switch Ports and Slots

The front panel of the Summit X440-24p switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T PoE+ ports (ports 1-24). The Summit X440-24p switch supports the PoE+ IEEE 802.3a standard and provides up to 30 Watts of power per port. This switch provides a total switch PoE power budget of 380 Watts.
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X440 Series Switch LEDs on page 64.

- Stack number indicator.

Figure 51: Summit X440-24p Switch Front Panel

1 = Ethernet management port	$4=$ Stack number indicator
$2=10 / 100 / 1000 B A S E-T$ PoE ports	5 = Console port
3 = SFP ports	$6=$ Combination ports

The rear panel of the Summit X440-24p switch includes:

- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 52: Summit X440-24p Switch Rear Panel

1 = AC power input connector	3 = Redundant power connector
2 = Stacking ports	

Summit X440-24p-10G Switch Ports and Slots

The front panel of the Summit X440-24p-10G switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T PoE+ ports (ports 1-24). In addition to 24 Gbps of high-density copper connectivity, these ports also provide a full 30 Watts of PoE+ per port. This switch provides a total switch PoE power budget of 380 Watts.
- Four unpopulated SFP ports (ports 21-24) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Two unpopulated SFP+ ports (ports 25 and 26) that provide 20 Gbps of fiber connectivity.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

Figure 53: Summit X440-24p-10G Switch Front Panel

1 = Ethernet management port	$5=$ Console port
$2=10 / 100 / 1000 B A S E-T$ PoE ports	$6=$ Combination ports
3 = SFP ports	$7=$ SFP+ ports
4 = Stack number indicator	

The rear panel of the Summit $\mathrm{X} 440-24 \mathrm{p}-10 \mathrm{G}$ switch (Figure 54 on page 57) includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 54: Summit X440-24p-10G Switch Rear Panel

1 = AC power input connector	2 = Redundant power connector

Summit X440-48t Switch Ports and Slots

The front panel of the Summit X440-48t switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 45-48) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 45 through 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X440 Series Switch LEDs on page 64.

- Stack number indicator.

Figure 55: Summit X440-48t Switch Front Panel

$1=$ Ethernet management port	4 = Stack number indicator
$2=10 / 100 / 1000 B A S E-T$ ports	$5=$ Console port
$3=$ SFP ports	$6=$ Combination ports

The rear panel of the Summit $\times 440-48$ t switch includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input connector.
- The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 56: Summit X440-48t Switch Rear Panel

1 = AC power input connector	3 = Redundant power connector
2 = Stacking ports	

Summit X440-48tDC Switch Ports and Slots

The front panel of the Summit $\mathrm{X} 440-48 \mathrm{tDC}$ switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 45-48) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 45 through 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

- Stack number indicator.

Figure 57: Summit X440-48tDC Switch Front Panel

1 = LEDs	$4=$ Stack number indicator
$2=10 / 100 / 1000 B A S E-$ T ports	$5=$ Ethernet management port/Console port
3 = SFP ports	$6=$ Combination ports

The rear panel of the Summit $\times 440-48 \mathrm{tDC}$ switch includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- DC power input connectors. The DC power supply operates at -48 V .

Figure 58: Summit X440-48tDC Switch Rear Panel

1 = DC power input connectors	3 = Redundant power connector
$2=$ Stacking ports	

Summit X440-48t-10G Switch Ports and Slots

The front panel of the Summit X440-48t-10G switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Two unpopulated SFP ports (ports 47 and 48) that provide 2 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 47 and 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Two unpopulated SFP+ ports (ports 49 and 50) that provide 20 Gbps of fiber connectivity.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

Figure 59: Summit X440-48t-10G Switch Front Panel

1 = Ethernet management port	5 = Console port
$2=10 / 100 / 1000 B A S E-T$ ports	$6=$ Combination ports
$3=$ SFP ports	7 = SFP + ports
$4=$ Stack number indicator	

The rear panel of the Summit X440-48t-10G switch includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 60: Summit X440-48t-10G Switch Rear Panel

Summit X440-L2-48t Switch Ports and Slots

The front panel of the Summit X440-L2-48t switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 45-48) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 45 through 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

Figure 61: Summit X440-L2-48t Switch Front Panel

1 = Ethernet management port	$4=$ Console port
$2=10 / 100 / 1000 B A S E-T$ ports	5 = Combination ports
3 = SFP ports	

The rear panel of the Summit X440-L2-48t switch includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module unit. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 62: Summit X440-L2-48t Switch Rear Panel

1 = AC power input connector	2 = Redundant power connector

Summit X440-48p Switch Ports and Slots

The front panel of the Summit X440-48p switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T PoE+ ports (ports 1-48). In addition to 48 Gbps of high-density copper connectivity, these ports also provide a full 30 Watts of PoE+ per port. This switch provides a total switch PoE power budget of 380 Watts.
- Four unpopulated SFP ports (ports $45-48$) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 45 through 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 440$ Series Switch LEDs on page 64.

- Stack number indicator

Figure 63: Summit X440-48p Switch Front Panel

1 = Ethernet management port	4 = Stack number indicator
$2=10 / 100 / 1000 B A S E-T$ PoE + ports	5 = Console port
3 = SFP ports	6 = Combination ports

The rear panel of the Summit X440-48p switch (Figure 64 on page 63) includes:

- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 64: Summit X440-48p Switch Rear Panel

$1=$ AC power input connector	3 = Redundant power connector
$2=$ Stacking ports	

Summit X440-48p-10G Switch Ports and Slots

The front panel of the Summit X440-48p-10G switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T PoE+ ports (ports 1-48). In addition to 48 Gbps of high-density copper connectivity, these ports also provide a full 30 Watts of PoE+ per port. This switch provides a total switch PoE power budget of 380 Watts.
- Two unpopulated SFP ports (ports 47 and 48) that provide 2 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules.

Ports 47 and 48 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Two unpopulated SFP+ ports (ports 49 and 50) that provide 20 Gbps of fiber connectivity.
- Ethernet management port.
- Serial console port implemented as an RJ45 connector, used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X440 Series Switch LEDs on page 64.

Figure 65: Summit X440-48p-10G Switch Front Panel

$1=$ Ethernet management port	$5=$ Console port
$2=10 / 100 / 1000 B A S E-T$ PoE + ports	$6=$ Combination ports

3 = SFP ports	$7=$ SFP + ports
4 = Stack number indicator	

The rear panel of the Summit X440-48p-10G switch includes:

- Redundant power input connector for optional connection to the EPS-C2 External Power Module

The connecting redundant power supply cable is shipped with the power module. See Installing an EPS-C2 Power Supply on page 333 for more information.

- AC power input socket.

The internal AC power supply operates from 100 VAC to 240 VAC.

Figure 66: Summit X440-48p-10G Switch Rear Panel

1 = AC power input connector	2 = Redundant power connector

Summit X440 Series Switch LEDs

The following sections describe the meanings of the LEDs on Summit X440 switches.
LEDs on the Summit $\times 440$ Series Switches

Table 16: Front Panel

Label or Type	Color/State	Meaning
MGT (Management)	Fast blinking green (2 Hz)	Power-on self test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Slow blinking green (1 Hz)	Normal operation
	Blinking amber	Switch diagnostics are running. or System is disabled. Post failed or system overheated.
	Off	No external power is attached.

Table 16: Front Panel (continued)

Label or Type	Color/State	Meaning
FAN	Steady green	Normal operation, fan is good. Note: For the following Summit models, fan light is "ON" only when the fan is running: - Summit X440-24t model No. 800471-00 Revision 6 or lower - Summit X440-24t-10G model No. 800475-00 Revision 5 or lower - Summit X440-L2-24t model No. 800526-00 Revision 1
	Blinking amber	Fan failure. Switch will continue to operate unless it overheats.
	Off	No power Note: For the following Summit models, fan light "OFF" indicates either no power to the fan or temperature is below threshold where fans are needed: - Summit X440-24t model No. 800471-00 Revision 6 or lower - Summit X440-24t-10G model No. 800475-00 Revision 5 or lower - Summit X440-L2-24t model No. 800526-00 Revision 1
PSU-I (Internal power supply)	Steady green	Normal operation.
	Steady amber	Power is attached, but no power is on.
	Blinking amber	Power failure.
	Off	No power is attached.
PSU-E (External power supply)	Steady green	Normal operation.
	Steady amber	Power is attached, but no power is on.
	Blinking amber	Power failure.
	Off	No external power attached.
Port number$\begin{aligned} & 1-8 \text { or } \\ & 1-24 \text { or } \\ & 1-48 \end{aligned}$	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.
Port number 21-24 or 45-48 (Shared ports)	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.
Port number$\begin{aligned} & 25-26 \text { or } \\ & 49-50 \\ & \text { (10G ports) } \end{aligned}$	Steady green	Link is OK.
	Blinking green	Port is transmitting packets.
	Off	Link is not present, or port is disabled.

Table 16: Front Panel (continued)

Label or Type	Color/State	Meaning
Stack 1, Stack 2 NOTE: The X440- L2-24t and X440- L2-48t do not have stacking capability; the stacking LEDs do not function.	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.
Stack Number Indicator NOTE: The X440-L2-24t and X440-L2-48t do not have stacking capability; the stacking LEDs do not function.	Top half of the stack number blinking	The switch is designated as master in the stack.
	Bottom half of the stack number blinking	The switch is designated as backup in the stack.
	Stack number steady	This switch is a standby switch (neither the master nor the backup) in the stack.
	Off	The stackable switch is not in stacking mode.

Table 17: Additional Port LED Meanings for PoE Switches: Summit X440-8p, X440-24p, X440-24p-10G, X440-48p, and X440-48p-10G

Label or Type	Color/State	Meaning
All front-panel ports	Steady green	Link OK; port is not powered.
	Steady amber	Link is OK; port is powered; no traffic.
	Blinking green	Link is OK and transmitting packets; port is not powered.
	Blinking amber	Link is OK and transmitting packets; port is powered.
	Slow blinking amber	No link, or disabled port; port is powered.
	Alternating amber and green	Port has a power fault.
	Off	Port is not powered, has no link, or is disabled.

Summit X450, X450a, and X450e Series Switches

The Summit X450, X450a, and X450e series switches provide 24 or 48 Ethernet ports.
These switches deliver high-density fast Ethernet connectivity using fixed 10/100/1000BASE-T ports or installable small form pluggable (SFP) optical modules. Models in different series are available both with and without PoE and in AC or DC power versions.

Each Summit X450, X450a, or X450e series switch has four combination ports that provide 10/100/1000 BASE-T or SFP connectivity for 4 Gbps of copper or fiber connectivity. A serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port on the back panel can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect the Ethernet management port directly to a laptop to view and locally manage the switch configurations.

The rear panel of the switch has an option slot to accommodate one of the Summit port option cards listed in the following table.

Table 18: Port Option Cards for Summit X450, X450a, and X450e Series Switches

Option Card Model	Type of Added Ports	For more information, see ...
XGM-2xn option card	10-gigabit XENPAK modules	Summit XGM-2xn Option Card on page 166
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

Option card compatibility depends on the specific switch series. See the individual switch descriptions for the option card supported on each switch. For option card installation instructions, see Installing Port Option Cards and VIMs on page 354.

Two high-speed stacking ports allow you to combine multiple units into a single SummitStack management entity.

Power connectors include an AC or DC power input socket and a redundant power connector. (See specific switch descriptions for more information about the power options.) The switch automatically adjusts to the supply voltage. The redundant power connector allows you to connect the switch to the an external power supply. When a compatible external power supply is used with the Summit X450, X450a, or X450e series switch, the internal and external power supplies are fully fault tolerant. For most switches, if one power supply fails, the other power supply will provide sufficient power to operate the switch. For information about power supply redundancy with the Summit X450a-48p switch, see Summit X450e-48p Power Supplies on page 86.

For information about each switch series, see the following sections:

- Summit X450 Series Switches on page 67
- Summit X450a Series Switches on page 70
- Summit $\times 450$ e Series Switches on page 79

Summit X450 Series Switches

The Summit X 450 series switches are 24 -port switches without PoE options.
The ports are implemented as fixed 10/100/1000BASE-t RJ45 ports or as installable SFP modules. These switches are available only with AC internal power supplies.

The Summit $\times 450$ series switches include the following models:

- Summit X450-24t Switch Ports and Slots on page 68
- Summit X450-24x Switch Ports and Slots on page 69

Summit $\mathrm{X} 450-24 \mathrm{t}$ switches require an ExtremeXOS version of at least 11.2.2.4 but not greater than 12.4.x. Summit $\times 450-24 x$ switches require an ExtremeXOS version of at least 11.6.1.9 but not greater than 12.4.x.

Summit X450-24t Switch Ports and Slots

The front panel of the Summit X450-24t switch includes:

- Twenty fixed autosensing 10/100/1000BASE-T ports (ports 5-24) that provide 20 Gbps of highdensity copper connectivity
- Four combination ports (ports 1-4) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Fail over on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\mathrm{X} 450, \mathrm{X} 450$ a, and X 450 e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 67: Summit X450-24t Switch Front Panel
The rear panel of the Summit X450-24t switch includes:

- Slot for the Summit XGM-2xn option card, which allows you to add one or two 10-gigabit XENPAK modules

See Summit XGM-2xn Option Card on page 166.

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-160 External Power Module (Model No. 10907)

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160 External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket

The internal power supply operates from 100 VAC to 240 V AC.

Figure 68: Summit X450-24t Switch Rear Panel

Summit X450-24x Switch Ports and Slots

The front panel of the Summit X450-24x switch includes:

- Twenty fixed SFP ports (ports 5-24) that provide 20 Gbps of high-density fiber connectivity

For information about SFPS, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Four combination ports (ports 1-4) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Fail over on page 12.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X450, X450a, and X450e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 69: Summit X450-24x Switch Front Panel
The rear panel of the Summit X450-24x switch includes:

- Slot for the Summit XGM-2xn option card, which allows you to add one or two 10-gigabit XENPAK modules

See Summit XGM-2xn Option Card on page 166.

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-160 External Power Module (Model No. 10907).

The connecting redundant power supply cable is shipped with the EPS-160 unit. See EPS-160 External Power Module (with EPS-T) on page 150 for more information.

- AC power input socket

The internal power supply operates from 100 VAC to 240 V AC.

Figure 70: Summit X450-24x Switch Rear Panel

Summit X450a Series Switches

The Summit X450a series switches are 24 -port or 48 -port switches without PoE options.
The Ethernet ports are implemented as fixed 10/100/1000BASE-T RJ45 ports or as installable SFP modules. These switches are available with either AC or DC internal power supplies. The switch automatically adjusts to the supply voltage. The internal AC power supply operates from 100 VAC to 240 VAC. The internal DC power supply operates from -36 VDC to -72 VDC.

The Summit X450a series switches include the following switches:

- Summit X450a-24t Switch Ports and Slots on page 71
- Summit X450a-24t-TAA switch
- Summit X450a-24tDC Switch Ports and Slots on page 72
- Summit X450a-24tDC-TAA switch
- Summit X450a-24x Switch Ports and Slots on page 73
- Summit X450a-24x-TAA switch
- Summit X450a-24xDC Switch Ports and Slots on page 75
- Summit X450a-24xDC-TAA switch
- Summit $\times 450 \mathrm{a}-48 \mathrm{t}$ Switch Ports and Slots on page 76
- Summit X450a-48t-TAA switch
- Summit X450a-48tDC Switch Ports and Slots on page 78
- Summit X450a-48tDC-TAA switch
Note
In the descriptions that follow, references to a Summit $\times 450$ a series model number also apply
to the equivalent TAA-compliant switch version.

The minimum required ExtremeXOS version for Summit X450a series switches varies by model. (See the Extreme Hardware/Software Compatibility and Recommendation Matrices for details.) The ExtremeXOS version cannot be greater than 15.3.x.

Summit X450a-24t Switch Ports and Slots

The front panel of the Summit X450a-24t switch includes:

- Twenty fixed autosensing 10/100/1000 BASE-T ports (ports 1-20) that provide 20 Gbps of highdensity copper connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 450$, $X 450$ a, and $X 450$ e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management

Figure 71: Summit X450a-24t Switch Front Panel
The rear panel of the Summit X450a-24t switch (Figure 72 on page 72) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 19: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to one of the following redundant power supplies:
- EPS-LD External Power Supply Unit (Model No. 45019)

See EPS-LD External Power Supply Unit on page 155 for more information.

- EPS-500 External Power Supply (Model 10911)

See EPS-500 External Power Supply Unit on page 151 for more information.

The connecting redundant power supply cable is shipped with the external power supply.

- AC power input socket

The internal power supply operates from 100 VAC to 240 VAC.

Figure 72: Summit X450a-24t Switch Rear Panel

Summit X450a-24tDC Switch Ports and Slots

The front panel of the Summit X450a-24tDC switch includes:

- Twenty fixed autosensing 10/100/1000 BASE-T ports (ports 1-20) that provide 20 Gbps of highdensity copper connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $X 450$, $X 450$ a, and $X 450$ e Series Switch LEDS on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management

Figure 73: Summit X450a-24tDC Switch Front Panel

The rear panel of the Summit X450a-24tDC switch (shown in Figure 74 on page 73) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 20: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Ethernet management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-150DC External Power Module (Model No. 10909)

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-150DC External Power Module (with EPS-T2) on page 149 for more information.

- DC power input socket

The internal power supply operates from -36 VDC to -72 VDC.

- Grounding lug
Note
For centralized DC power connection, this product is intended to be installed in a restricted
access location (such as a dedicated equipment room, equipment closet, or central office) in
accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA
70 .

Figure 74: Summit X450a-24tDC Switch Rear Panel

Summit X450a-24x Switch Ports and Slots

The front panel of the Summit X450a-24x switch includes:

- Twenty 1000BASE-X ports (ports 1-20) that provide 20 Gbps of high-density fiber (SFP) connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Fail over on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X450, X 450 a, and X 450 e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 75: Summit X450a-24x Switch Front Panel
The rear panel of the Summit X450a-24x switch (Figure 76 on page 75) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 21: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to one of the following external redundant power supplies:
- EPS-LD External Power Supply Unit (Model No. 45019)

See EPS-LD External Power Supply Unit on page 155 for more information.

- EPS-500 External Power Supply (Model 10911)

See EPS-500 External Power Supply Unit on page 151 for more information.
The connecting redundant power supply cable is shipped with the external power supply.

- AC power input socket

The internal power supply operates from 100 VAC to 240 VAC.

Figure 76: Summit X450a-24x Switch Rear Panel

Summit X450a-24xDC Switch Ports and Slots

The front panel of the Summit X450a-24xDC switch includes:

- Twenty fixed autosensing 1000BASE-X ports (ports 1-20) that provide 20 Gbps of high-density fiber (SFP) connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Fail over on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X450, X 450 a, and X 450 e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 77: Summit X450a-24xDC Switch Front Panel
The rear panel of the Summit X450a-24xDC switch (Figure 78 on page 76) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 22: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-150DC External Power Module (Model No. 10909)

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-150DC External Power Module (with EPS-T2) on page 149 for more information.

- DC power input socket

The internal power supply operates from -36 VDC to -72 VDC.

- Grounding lug
Note
For centralized DC power connection, this product is intended to be installed in a restricted
access location (such as a dedicated equipment room, equipment closet, or central office) in
accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA
70 .

Figure 78: Summit X450a-24xDC Switch Rear Panel

Summit X450a-48t Switch Ports and Slots

The front panel of the Summit X450a-48t switch includes:

- Forty-four fixed autosensing 10/100/1000 BASE-T ports (ports 1-44) that provide 44 Gbps of highdensity copper connectivity
- Four combination ports (ports 45-48) using RJ45 connectors and SFPs to provide 4 Gbps of fiber or copper connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $X 450, X 450$ a, and $X 450$ e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 79: Summit X450a-48t Switch Front Panel
The rear panel of the Summit X450a-48t switch (Figure 80 on page 78) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 23: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-500 External Power Supply Unit (Model No. 10911)

The connecting redundant power supply cable is shipped with the EPS-500 power supply. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket

The internal power supply operates from 100 VAC to 240 V AC.

Figure 80: Summit X450a-48t Switch Rear Panel

Summit X450a-48tDC Switch Ports and Slots

The front panel of the Summit X450a-48tDC switch includes:

- Forty-four fixed autosensing 10/100/1000 BASE-T ports (ports 1-44) that provide 44 Gbps of highdensity copper connectivity
- Four combination ports (ports 45-48) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $\times 450$, $X 450$ a, and $X 450$ e Series Switch LEDS on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 81: Summit X450a-48tDC Switch Front Panel
The rear panel of the Summit X450a-48tDC switch (Figure 82 on page 79) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 24: Port Option Cards for Summit X450a Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-150DC External Power Module (Model No. 10909)

The connecting redundant power supply cable is shipped with the EPS-150DC unit. See EPS-500 External Power Supply Unit on page 151 for more information.

- DC power input socket

The internal power supply operates from -36 VDC to -72 V DC.

- Grounding lug
Note
For centralized DC power connection, this product is intended to be installed in a restricted
access location (such as a dedicated equipment room, equipment closet, or central office) in
accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA
70 .

Figure 82: Summit X450a-48tDC Switch Rear Panel

Summit X450e Series Switches

The Summit X450e series switches provide 24 or 48 fixed 10/100/1000BASE-T Ethernet ports using RJ45 connectors.

Models are available with PoE and without PoE. These switches are available only in AC-powered models.

The Summit X450e series of switches consists of the following switches:

- Summit X450e-24t Switch Ports and Slots on page 80
- Summit X450e-24t-TAA switch
- Summit X450e-24p Switch Ports and Slots on page 81
- Summit X450e-24p-TAA switch
- Summit X450e-48t Switch Ports and Slots on page 83
- Summit X450e-48t-TAA switch
- Summit X450e-48p Switch Ports and Slots on page 84
- Summit X450e-48p-TAA switch

Note

In the descriptions that follow, references to a Summit X450e series model number also apply to the equivalent TAA-compliant switch version.

The minimum required ExtremeXOS version for Summit X450e series switches varies by model. (See the Extreme Hardware/Software Compatibility and Recommendation Matrices for details.) The ExtremeXOS version cannot be greater than 15.3.x.

Summit $\times 450$ - 24 t Switch Ports and Slots

The front panel of the Summit X450e-24t switch includes:

- Twenty fixed autosensing 10/100/1000BASE-T ports (ports 1-20) that provide 20 Gbps of highdensity copper connectivity
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPS, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit $X 450, X 450$ a, and $X 450$ e Series Switch LEDS on page 87.

- Serial console port used to connect a terminal and perform local management.

The rear panel of the Summit X450e-24t switch (Figure 83 on page 81) includes:

- Slot for one of the Summit option cards listed in Table 24 on page 79. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 25: Port Option Cards for Summit X450e Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-500 External Power Module (Model No. 10907).

The connecting redundant power supply cable is shipped with the EPS-500 unit. See EPS-500 External Power Supply Unit on page 151 for more information.

- AC power input socket

The internal power supply operates from 100 VAC to 240 VAC.

Figure 83: Summit X450e-24t Switch Rear Panel

Summit X450e-24p Switch Ports and Slots

The front panel of the Summit X450e-24p switch includes:

- Twenty fixed autosensing 10/100/1000 BASE-T PoE ports (ports 1-20) that provide high-density copper connectivity and a full 15.4 Watts of PoE per port.
- Four combination ports (ports 21-24) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

Note
All 24 ports can provide PoE power.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X450, X450a, and X450e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 84: Summit X450e-24p Switch Front Panel
The rear panel of the Summit X450e-24p switch (Figure 85 on page 83) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 26: Port Option Cards for Summit X450e Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to one of the following external redundant power supplies with full PoE power support:
- EPS-LD External Power Supply Unit (Model 45019)

See EPS-LD External Power Supply Unit on page 155 for more information.

- EPS-500 External Power Supply (Model 10911).

See EPS-500 External Power Supply Unit on page 151 for more information.

The connecting redundant power supply cable is shipped with the power supply.

- AC power input socket

The internal power supply operates from 100 VAC to 240 VAC.

Figure 85: Summit X450e-24p Switch Rear Panel

Summit $\times 450$ - 48 t Switch Ports and Slots

The front panel of the Summit $\times 450 \mathrm{e}-48 \mathrm{t}$ switch includes:

- Forty-four fixed autosensing 10/100/1000 BASE-T ports (ports 1-44) that provide 44 Gbps of highdensity copper connectivity.
- Four combination ports (ports 45-48) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Failover on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X 450 , X 450 a, and X 450 e Series Switch LEDS on page 87.

- Serial console port used to connect a terminal and perform local management.

Figure 86: Summit X450e-48t Switch Front Panel
The rear panel of the Summit X450e-48t switch (Figure 87 on page 84) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 27: Port Option Cards for Summit X450e Series Switches

Option Card Model	Type of Added Ports	For More Information, see ...
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168

Table 27: Port Option Cards for Summit X450e Series Switches (continued)

Option Card Model	Type of Added Ports	For More Information, see ...
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs.
- Two high-performance stacking ports with associated LEDs.
- Redundant power input connector for optional connection to the EPS-500 External Power Supply Unit (Model No. 10911).

See EPS-500 External Power Supply Unit on page 151 for more information. The connecting redundant power supply cable is shipped with the EPS-500 power supply.

- AC power input socket

The power supply operates from 100 VAC to 240 VAC.

Figure 87: Summit X450e-48t Switch Rear Panel

Summit X450e-48p Switch Ports and Slots

The front panel of the Summit X450e-48p switch includes:

- Forty-four fixed autosensing 10/100/1000 BASE-T PoE ports (ports 1-44) that provide high-density copper connectivity and a full 15.4 Watts of PoE per port when used with the EPS-C/EPS-600LS
- Four combination ports (ports 45-48) using RJ45 connectors and SFPs to provide 4 Gbps of copper or fiber connectivity

For more information about combination ports, see Combination Ports and Fail over on page 12.
For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

Note

All 48 ports can provide PoE power.

- LEDs to indicate port status and switch operating conditions

For a description of the LEDs and their operation, see Summit X450, X450a, and X450e Series Switch LEDs on page 87.

- Stack number indicator showing the position of this switch in a stacked configuration
- Serial console port used to connect a terminal and perform local management.

Figure 88: Summit X450e-48p Switch Front Panel
The rear panel of the Summit X450e-48p switch (Figure 89 on page 85) includes:

- Slot for one of the Summit option cards listed in the following table. These port option cards allow you to add one or two high-speed uplink ports to the switch.

Table 28: Port Option Cards for Summit X450e Series Switches

Option Card Model	Type of Added Ports	For More Information
XGM2-2xn option card	10-gigabit XENPAK modules	Summit XGM2-2xn Option Card on page 167
XGM2-2xf option card	10-gigabit XFP modules	Summit XGM2-2xf Option Card on page 168
XGM2-2sf option card	10-gigabit SFP+ modules	Summit XGM2-2sf Option Card on page 169
XGM2-2bt option card	Fixed 10GBASE-T copper	Summit XGM2-2bt Option Card on page 170

- Management port with associated LEDs
- Two high-performance stacking ports with associated LEDs
- Redundant power input connector for optional connection to the EPS-C chassis (Model No. 10912). This chassis can hold up to three EPS-600LS External Power Modules (Model No. 10913). The connecting redundant power supply cable is shipped with the EPS-C chassis.

The PoE capability of the Summit X450e-48p switch varies depending on the number of external power modules in use. For more information, see Summit X450e-48p Power Supplies on page 86 and EPS-600LS External Power Module on page 152.

- AC power input socket

The power supply operates from 100 VAC to 240 VAC.

Figure 89: Summit X450e-48p Switch Rear Panel

Summit X450e-48p Power Supplies

Internal Power Supply

The Summit $\mathrm{X} 450 \mathrm{e}-48 \mathrm{p}$ switch is powered by both an internal power supply and an optional external redundant power supply system.

The internal Summit X450e-48p power supply can provide 370 W of PoE power, as follows:

- In a 24-port configuration, it provides 15.4 W to each port.
- In 48-port configuration or any combination of ports where total PoE power does not exceed 370 watts, it provides 7.7 W to each port.

If the total system demands exceed this power limit, you can specify:

- Port priorities to identify which ports should be ranked higher when allocating power.
- Port disconnect precedence to specify the method of shutting off ports when not enough PoE power is available.

Note

For a detailed discussion of these concepts, see the Power over Ethernet section in the ExtremeXOS 22.3 User Guide.

External Power Supplies

The Summit X450e-48p switch can be powered by one, two, or three external power modules through the redundant power input connector on the rear of the switch.

The EPS-C (External Power Supply Chassis) is shipped with the redundant power supply cable that connects to the redundant input connector on the rear of the switch. The EPS-C chassis can hold from one to three 600-Watt EPS-600LS external power module units.

The PoE capability of the Summit $\times 450 \mathrm{e}-48 \mathrm{p}$ switch varies depending on the number of external power modules in use. The following table summarizes the PoE power behavior for the Summit X450e-48p switch based on the number of power supply modules in use.

Internal Power Supply Status	EPS-600LS (1x)	EPS-600LS (2x)	EPS-600LS (3x)	External Power Supply/ Chassis Failed/ Disconnected
Internal Power Supply: Power On	370 W of redundant power	740 W of external power only Internal power supply disabled	740 W of external power only with 2:1 redundancy Internal power supply disabled	370 W of internal power only
Internal Power Supply: Power Failure	370 W of external power only	740 W of external power only	740 W of external power only with 2:1 redundancy	No PoE power

For more information, see EPS-600LS External Power Module on page 152.

Summit $\times 450, \times 450$ a, and $\times 450$ e Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X450, X450a, and X450e series switches.

Table 29: Front Panel

Label or Type	Color/State	Meaning
MGMT	Blinking green (fast)	Power-on self-test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Blinking green (slow)	Normal operation
	Blinking amber	Switch diagnostics running. or System is disabled. POST failed or system overheated.
	Off	No external power attached.
FAN	Steady green	Normal operation
	Steady amber*	A single fan in the array has failed. The switch can continue to operate indefinitely. ${ }^{1}$
	Blinking amber	Failure or Two or more fans in the array have failed. Because system cooling is compromised, you should replace the switch.*
	Off	No power
PSU-I (Internal power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
PSU-E (External power supply)	Steady green	Normal operation
	Blinking amber	Failure
	Off	No external power attached.
Ethernet Ports 1-24 or 1-48 (21-24 and 45-48 are shared ports)	Steady green	Link OK
	Blinking green	Activity
	Off	Link is not present or port is disabled.
Stack Number Indicator	Top half of number blinking	This switch is the stack master.
	Lower half of number blinking	This switch is the stack backup.
	Number lights steadily	This switch is a standby node (neither the master nor the backup).
	LED dark	This stackable switch is not in stacking mode.

[^0]Table 30: Additional Port LED meanings for PoE switches: Summit X450e-24p \& Summit X450e-48p

Label or Type	Color/State	Meaning
All front-panel ports	Steady amber	Port is powered with link, with no traffic.
	Blinking amber	Port is powered with link, with traffic.
	Slow blinking amber	Port is powered, with no link.
	Alternating amber and green	Port has a fault.
	Off	Port is not powered, has no link, or is disabled.

Table 31: Rear Panel

Label or Type	Color/State	Meaning
Management Port	Steady green	Link OK
	Blinking green	Activity
Stacking Port	Steady green	Link OK
	Blinking green	Activity
SFP 1G Port (on installed option card)	Steady green	Link OK
	Blinking green	Activity
XENPAK 10G Port (on installed option card)	Steady green	Link OK
	Blinking green	Activity
XFP 10G Port (on installed option card)	Steady green	Blinking green

Summit X450-G2 Series Switches

The Summit X450-G2 series switches provide 24 or 48 Ethernet ports that deliver high-density fast Ethernet or Gigabit Ethernet connectivity using fixed 10/100/1000BASE-T ports. In addition, some models offer either 24 or 48 PoE+ ports. The X450-G2 series switches also provide four ports of SFP +10 Gb Ethernet or four ports of SFP 1 Gb Ethernet on the front panel. Each model includes two dedicated stacking ports on the rear panel.

All X450-G2 ports are full-duplex. They do not support half-duplex operation.
The Summit X450-G2 series switches include the following base models:

- Summit X450-G2-24t-GE4 switch
- Summit X450-G2-24t-10GE4 switch
- Summit X450-G2-48t-GE4 switch
- Summit X450-G2-48t-10GE4 switch
- Summit X450-G2-24p-GE4 switch
- Summit X450-G2-24p-10GE4 switch
- Summit X450-G2-48p-GE4 switch
- Summit X450-G2-48p-10GE4 switch

Each base model supports front-to-back cooling only. Switch cooling is provided by a replaceable fan module.

Note
The fan module must be ordered separately.

A serial console port on the front panel of the Summit X450-G2 series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

The non-PoE+ switches (that is, the $24 t$ and $48 t$ models) have a fixed, internal power supply. The PoE+ switches (that is, the 24 p and 48p models) have two power supply bays to accommodate AC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fans.

For more information about the power supplies used in the Summit X450-G2 switches, see Replaceable Internal Power Supplies for Summit Switches on page 159.

Note

Summit X450-G2 series switches do not support back-to-front (BF) power supplies, and the switches do not support the back-to-front fan module.

Summit X450-G2 series switches require ExtremeXOS version 16.1.1 or later, or version 21.1.1 or later.

Summit X450-G2-24t-GE4 Switch Ports and Slots

The Summit X450-G2-24t-GE4 switch ports and slots include:

- 24 front panel ports of 10/100/1000BASE-T (ports 1-24).
- Four front panel ports of 1GBASE-X SFP (ports 25-28).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One fixed power supply.
- One rear redundant power supply connector.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.

Figure 90: Summit X450-G2-24t-GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000 B A S E-T$ ports
2 = Console port/Ethernet management port	$5=$ SFP 1GBASE-X ports
3 = USB port	

Figure 91: Summit X450-G2-24t-GE4 Rear Panel

1 = 21 Gb stacking ports (QSFP +)	$4=$ AC power input connector
2 = Redundant power supply (RPS) connector	$5=$ Grounding screw
3 = Front-to-back fan module slot	

Summit X450-G2-24t-10GE4 Switch Ports and Slots

The Summit X450-G2-24t-10GE4 switch ports and slots include:

- 24 front panel ports of 10/100/1000BASE-T (ports 1-24).
- Four front panel ports of 10GBASE-X SFP+ (ports 25-28, with ports 27 and 28 configurable to be stacking ports). The SFP+ ports are dual speed ($1 \mathrm{~Gb} / 10 \mathrm{~Gb}$).
- Front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One fixed power supply.
- One rear redundant power supply connector.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.

Figure 92: Summit X450-G2-24t-10GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000 B A S E-T$ ports
$2=$ Console port/Ethernet management port	$5=$ SFP+10GBASE-X ports
3 = USB port	

Figure 93: Summit X450-G2-24t-10GE4 Rear Panel

1 = 21 Gb stacking ports (QSFP +)	$4=$ AC power input connector
2 = Redundant power supply (RPS) connector	$5=$ Grounding screw
3 = Front-to-back fan module slot	

Summit X450-G2-24p-GE4 Switch Ports and Slots

The Summit X450-G2-24p-GE4 switch ports and slots include:

- 24 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-24).
- Four front panel ports of 1GBASE-X SFP (ports 25-28).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.
- Rear dual power supply slots with front-to-back airflow.

Note
Unused power supply slots must be covered with blank panels.

Figure 94: Summit X450-G2-24p-GE4 Front Panel

1 = Stack number indicator	$4=$ PoE+ 10/100/1000BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP 1G ports
3 = USB port	

Figure 95: Summit X450-G2-24p-GE4 Rear Panel

$1=21$ Gb stacking ports (QSFP+)	$3=$ Front-to-back fan module slot
$2=$ Grounding screw	$4=$ PoE + power supply bays

Summit X450-G2-24p-10GE4 Switch Ports and Slots

The Summit X450-G2-24p-10GE4 switch ports and slots include:

- 24 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-24).
- Four front panel ports of 10GBASE-X SFP+ (ports 25-28, with ports 27 and 28 configurable to be stacking ports). The SFP+ ports are dual speed ($1 \mathrm{~Gb} / 10 \mathrm{~Gb}$).
- Front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.
- Rear dual power supply slots with front-to-back airflow.

Note

Unused power supply slots must be covered with blank panels.

Figure 96: Summit X450-G2-24p-10GE4 Front Panel

1 = Stack number indicator	$4=$ PoE+ 10/100/1000BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP+10GBASE-X ports
3 = USB port	

Figure 97: Summit X450-G2-24p-10GE4 Rear Panel

$1=21$ Gb stacking ports (QSFP+)	$3=$ Front-to-back fan module slot
$2=$ Grounding screw	$4=$ PoE + power supply bays

Summit X450-G2-48t-GE4 Switch Ports and Slots

The Summit X450-G2-48t-GE4 switch ports and slots include:

- 48 front panel ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 1GBASE-X SFP (ports 49-52).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One fixed power supply.
- One rear redundant power supply connector.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.

Figure 98: Summit X450-G2-48t-GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000$ BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP 1GBASE-X ports
3 = USB port	

Figure 99: Summit X450-G2-48t-GE4 Rear Panel

1 = 21 Gb stacking ports (QSFP +)	$4=$ AC power input connector
2 = Redundant power supply (RPS) connector	$5=$ Grounding screw
3 = Front-to-back fan module slot	

Summit X450-G2-48t-10GE4 Switch Ports and Slots

The Summit X450-G2-48t-10GE4 switch ports and slots include:

- 48 front panel ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 10GBASE-X SFP+ (ports 49-52, with ports 51 and 52 configurable to be stacking ports). The SFP+ ports are dual speed ($1 \mathrm{~Gb} / 10 \mathrm{~Gb}$).
- Front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One fixed power supply.
- One rear redundant power supply connector.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.

Figure 100: Summit X450-G2-48t-10GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000 B A S E-T$ ports
2 = Console port/Ethernet management port	$5=$ SFP+10GBASE-X ports
3 = USB port	

Figure 101: Summit X450-G2-48t-10GE4 Rear Panel

1 = 21 Gb stacking ports (QSFP +)	$4=$ AC power input connector
2 = Redundant power supply (RPS) connector	$5=$ Grounding screw
3 = Front-to-back fan module slot	

Summit X450-G2-48p-GE4 Switch Ports and Slots

The Summit X450-G2-48p-GE4 switch ports and slots include:

- 48 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 1GBASE-X SFP (ports 49-52).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.
- Rear dual power supply slots with front-to-back airflow.

Note
Unused power supply slots must be covered with blank panels.

Figure 102: Summit X450-G2-48p-GE4 Front Panel

1 = Stack number indicator	$4=$ PoE+ 10/100/1000BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP 1GBASE-X ports
3 = USB port	

Figure 103: Summit X450-G2-48p-GE4 Rear Panel

$1=21$ Gb stacking ports (QSFP+)	$3=$ Front-to-back fan module slot
$2=$ Grounding screw	$4=$ PoE + power supply bays

Summit X450-G2-48p-10GE4 Switch Ports and Slots

The Summit X450-G2-48p-10GE4 switch ports and slots include:

- 48 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 10GBASE-X SFP+ (ports 49-52, with ports 51 and 52 configurable to be stacking ports). The SFP+ ports are dual speed ($1 \mathrm{~Gb} / 10 \mathrm{~Gb}$).
- Front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear slot for fan module with front-to-back airflow.
- Two dedicated QSFP-form factor 21 Gb stacking ports on the rear panel.
- Rear dual power supply slots with front-to-back airflow.

Note

Unused power supply slots must be covered with blank panels.

Figure 104: Summit X450-G2-48p-10GE4 Front Panel

1 = Stack number indicator	$4=$ PoE+ 10/100/1000BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP+ 10GBASE-X ports
3 = USB port	

Figure 105: Summit X450-G2-48p-10GE4 Rear Panel

$1=21$ Gb stacking ports (QSFP+)	$3=$ Front-to-back fan module slot
$2=$ Grounding screw	$4=$ PoE + power supply bays

Summit X450-G2 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X450-G2 series switches.

Table 32: X450-G2 Front Panel LEDs

Label or Type	Color/State	Meaning
M (Management)	Slow blinking green $(1 \mathrm{~Hz})$	Normal operation
	Fast blinking green $(2 \mathrm{~Hz})$	Power-on self test (POST) in progress or Switch diagnostics are running
	Steady green	POST passed: system is booting image
	Blinking amber	System is disabled: POST failed or system overheated
	Off	No external power is attached
S1, S2 (Stack Management)	Steady green	Link OK on the indicated stacking port
	Blinking green	Activity on the indicated stacking port

Table 32: X450-G2 Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
	Steady green	Sormal operation
	Blinking amber	Power is attached, but no power is on
	Off	Power failure
Ethernet Port 1-24 or 1-48	Steady green	No power attached
	Blinking green	Link OK
1G SFP ports or 10G SFP+ Ports 25, 26, 27, and 28 or $49,50, ~ 51, ~ a n d ~ 52 ~$	Steady green	Activity on the indicated port
	Off	No link or port disabled

Table 33: Additional Port LED Meanings for PoE Switches: Summit X450-G2-24p-GE4, X450-G2-24p-10GE4, X450-G2-48p-GE4, and X450-G2-48p-10GE4

Label or Type	Color/State	Meaning
All front panel ports 1-24 or 1-48	Steady green	Link is OK; port is not powered
	Steady amber	Link is OK; port is powered; no traffic
	Blinking green	Link is OK and transmitting packets; port is not powered
	Blinking amber	Link is OK and transmitting packets; port is powered
	Slow blinking amber	No link, or disabled port; port is powered
	Alternating amber and green	Port has a power fault
	Off	Port is not powered, has no link, or is disabled

Table 34: Summit X450-G2 2-digit Stack Number Indicator

Label or Type	Color/State	Meaning
Left digit (1)	Reserved for future use.	
Right digit (1-8)	Indicates the position of this switch in the SummitStack configuration	
	Upper half blinking	This switch is the stack master node
	Lower half blinking	This switch is the stack backup node
	Lit steadily	This switch is a standby node in the stack

Summit X460 Series Switches

The Summit X460 series switches are 24 -port or 48 -port switches that provide Ethernet connectivity using fixed 10/100/1000BASE-T RJ45 ports or installable SFP or SFP+ optical modules.

Two Summit X460 models support the PoE+ IEEE 802.3at standard and provide up to 30 Watts of power per port. These models provide a total switch PoE power budget of 380 Watts with a single installed power supply and 760 Watts with two installed power supplies.

Four of the Summit X460 models include ports that support Synchronous Ethernet. Five models have four combination ports that provide 10/100/1000 BASE-T or SFP connectivity for 4 Gbps of copper or fiber connectivity.

A serial console port on the front panel allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configurations. The Ethernet management port supports 10/100/1000 Mbps speeds.

The rear panel of the switch provides slots for installing the Summit option cards listed in the following table. These port option cards allow you to add high-speed data ports or stacking ports to the switch.

Summit X460 series switches require an ExtremeXOS version of at least 12.5.1 but not greater than 16.x.

Port Option Cards for Summit X460 Series Switches

Table 35: Slot A

Option Card Model	Connector Type	Port Type	More Information
XGM3-2sf	10-gigabit SFP+ modules	Data	XGM3-2sf Port Option Card on page 177
XGM3S-2sf	10-gigabit SFP+ modules	Data with SyncE support	XGM3S-2sf Port Option Card on page 178
XGM3S-2xf	10-gigabit XFP modules	Data with SyncE support	XGM3S-2xf Port Option Card on page 178

Table 36: Slot B

Option Card Model	Connector Type	Port Type	More Information
SummitStack stacking module	Integrated stacking ports	20-Gbps bidirectional stacking	Summit X460 Series Stacking Modules on page 180
SummitStack-V80 stacking module	QSFP+ optical modules or QSFP+ compatible active or passive cables	20-Gbps bidirectional stacking	Summit X460 Series Stacking Modules on page 180
XGM3SB-4sf	10-gigabit SFP+ modules	Data with SyncE support	XGM3SB-4sf Port Option Card on page 179

Cooling is provided by a replaceable fan module. Two power supply bays accommodate either an AC or DC power supply; the PoE-capable models require a specific AC power supply. For more information
about the power supplies used in the Summit X460 switches, see Replaceable Internal Power Supplies for Summit Switches on page 159.

The Summit X 460 series switches include the following base models:

- Summit X460-24t Switch Ports and Slots on page 100
- Summit X460-24x Switch Ports and Slots on page 101
- Summit X460-24p Switch Ports and Slots on page 102
- Summit X460-48t Switch Ports and Slots on page 103
- Summit X460-48x Switch Ports and Slots on page 104
- Summit X460-48p Switch Ports and Slots on page 105

Summit X460-24t Switch Ports and Slots

The front panel of the Summit X460-24t switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24) that provide 24 Gbps of highdensity copper connectivity
- Eight unpopulated SFP ports (ports 21-28) that provide 8 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.

- Stack number indicator.

Figure 106: Summit X460-24t Switch Front Panel
The rear panel of the Summit X460-24t switch (Figure 107 on page 101) includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 300 W AC and DC Power Supplies on page 160).

Figure 107: Summit X460-24t Switch Rear Panel

Summit X460-24x Switch Ports and Slots

The front panel of the Summit X460-24x switch includes:

- Twenty-four unpopulated SFP ports (ports 1-24) that provide 24 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- Eight fixed autosensing 10/100/1000BASE-T ports (ports 21-28) that provide 8 Gbps of high-density copper connectivity.
- Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.
- Ports 1 through 28 support Synchronous Ethernet. For information about this feature, see the ExtremeXOS 22.3 User Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.
- Stack number indicator.

Figure 108: Summit X460-24x Switch Front Panel
The rear panel of the Summit $\times 460-24 x$ switch (Figure 109 on page 102) includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 300 W AC and DC Power Supplies on page 160).

Figure 109: Summit X460-24x Switch Rear Panel

Summit X460-24p Switch Ports and Slots

The front panel of the Summit X460-24p switch includes:

- Twenty-four fixed autosensing 10/100/1000BASE-T ports (ports 1-24). In addition to 24 Gbps of high-density copper connectivity, these ports also provide up to 30 Watts of PoE per port.
- Eight unpopulated SFP ports (ports 21-28) that provide 8 Gbps of fiber connectivity. The SFP ports support both 100BASE-X and 1000BASE-X optical modules.

Ports 21 through 24 are implemented as shared ports that pair a copper port with a fiber port. For more information about combination ports, see Combination Ports and Failover on page 12.

For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.

- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.
- Stack number indicator.

Figure 110: Summit X460-24p Switch Front Panel
The rear panel of the Summit X460-24p switch (Figure 111 on page 103) includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for the Summit 750 W AC power supply (see Summit 750 W AC Power Supply on page 163).

Note

Only the Summit 750 W AC power supply is compatible with the Summit X460-24p switch. Other Summit replaceable power supplies do not support PoE operation in this switch.

Figure 111: Summit X460-24p Switch Rear Panel

Summit X460-48t Switch Ports and Slots

The front panel of the Summit X460-48t switch includes:

- Forty-eight fixed autosensing 10/100/1000BASE-T ports (ports 1-48) that provide 48 Gbps of highdensity copper connectivity.
- Four unpopulated SFP ports (ports 49-52) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.
- Stack number indicator.

Figure 112: Summit X460-48t Switch Front Panel
The rear panel of the Summit X460-48t switch includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 300 W AC and DC Power Supplies on page 160).

Figure 113: Summit X460-48t Switch Rear Panel

Summit X460-48x Switch Ports and Slots

The front panel of the Summit X460-48x switch includes:

- All the front-panel ports on the Summit X460-48x switch support Synchronous Ethernet. For information about this feature, see the ExtremeXOS 22.3 User Guide. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.
- Stack number indicator.

Figure 114: Summit X460-48x Switch Front Panel
The rear panel of the Summit X460-48x switch includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 300 W AC and DC Power Supplies on page 160).

Figure 115: Summit X460-48x Switch Rear Panel

Summit X460-48p Switch Ports and Slots

The front panel of the Summit X460-48p switch includes:

- Forty-eight autosensing 10/100/1000BASE-T ports (ports 1-48). In addition to 48 Gbps of highdensity copper connectivity, these ports provide up to 30 Watts of PoE per port.
- Four unpopulated SFP ports (ports 49-52) that provide 4 Gbps of fiber connectivity. The SFP ports support both 100BASE-FX and 1000BASE-X optical modules. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X460 Series Switch LEDs on page 106.
- Stack number indicator.

Figure 116: Summit X460-48p Switch Front Panel

The rear panel of the Summit X460-48p switch (Figure 117 on page 106) includes:

- Two slots for port option cards or stacking modules (see Port Option Cards for Summit X460 Series Switches on page 99).
- Replaceable fan tray.
- Two power supply bays for the Summit 750 W AC power supply (see Summit 750 W AC Power Supply on page 163).

Note
Only the Summit 750 W AC power supply is compatible with the Summit X460-24p switch. Other Summit replaceable power supplies do not support PoE operation in this switch.

Figure 117: Summit X460-48p Switch Rear Panel

Summit X460 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X460 series switches.

Table 37: Front Panel LEDs

Label or Type	Color/State	Meaning
M (Management)	Fast blinking green (2 Hz)	Power-on self test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Slow blinking green (1 Hz)	Normal operation
	Blinking amber	Switch diagnostics are running. or System is disabled. Post failed or system overheated.
	Off	No external power is attached.
FAN	Steady green	Normal operation.
	Blinking amber	Failure.
	Off	No power.
PSU-1, PSU-2	Steady green	Normal operation.
	Steady amber	Power is attached, but no power is on.
	Blinking amber	Failure.
	Off	No power is attached.
10G 1-2	Steady green	Link OK on the indicated 10-Gbps port.
	Blinking green	Activity on the indicated 10-Gbps port.
Stack Management 1-2	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.

Table 38: 2-digit Stack number Indicator

Label or Type	Meaning	
		Reserved for future use
Right digit (1-8) Indicates the position of this switch in the SummitStack configuration.	Upper half blinking	This switch is the stack master node.
	Lit steadily	This switch is the stack backup node.
Ethernet Ports $1-28$ or $1-48$	Steady green	Link switch is a standby node in the stack.
	Blinking green	Activity
	Off	No link, or port is disabled.

Table 39: Additional Port LED meanings for PoE switches: Summit X460-24p \& Summit X460-48p

Label or Type		Color/State
All front-panel ports	Steady amber	Port is powered with link, no traffic
	Blinking amber	Port is powered with link, traffic
	Off	Port is not powered, has no link, or is disabled
Management Port	Steady green	Link OK
	Blinking green	Activity
	Off	No link, or port is disabled.

Table 40: Back Panel

Label or Type	Color/State	Meaning
	Steady green	Link OK
	Blinking green	Activity
Stacking Port LED (on installed SummitStack or SummitStack-V80 module)	Steady green	Blinking green OK
	Activity	

Summit X460-G2 Series Switches

The Summit X460-G2 series switches provide 24 or 48 Ethernet ports that deliver high-density fast Ethernet or Gigabit Ethernet connectivity using fixed BASE-T and BASE-X ports. In addition, some models offer either 24 or 48 PoE+ ports.

All X460-G2 ports are full-duplex. They do not support half-duplex operation.
The X460-G2 series switches include the following base models:

- Summit X460-G2-24t-GE4 switch
- Summit X460-G2-24t-10GE4 switch
- Summit X460-G2-24x-10GE4 switch
- Summit X460-G2-24p-GE4 switch
- Summit X460-G2-24p-10GE4 switch
- Summit X460-G2-48t-GE4 switch
- Summit X460-G2-48t-10GE4 switch
- Summit X460-G2-48X-10GE4 switch
- Summit X460-G2-48p-GE4 switch
- Summit X460-G2-48p-10GE4 switch

Each base model is available with either front-to-back or back-to-front cooling. There is no operational difference between these switch versions.

A serial console port on the front panel of the Summit X460-G2 series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

Switch cooling is provided by a replaceable fan module. Fan modules are available in two different models that direct the airflow either from front to back or from back to front. Two power supply bays accommodate either AC or DC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fan.

Like the fan module, the power supplies are available in models with either front-to-back or back-tofront cooling airflow. For more information about the power supplies used in the Summit X460-G2 switches, see Replaceable Internal Power Supplies for Summit Switches on page 159.

Power supplies and fan trays are ordered separately.

Caution

Air must flow in the same direction for all installed fan modules and power supplies in a switch.

Other X460-G2 switch models require ExtremeXOS version 15.6.1.4 or later, or version 21.1.1 or later.

Versatile Interface Module (VIM) Options for X460-G2 Series Switches

The following VIMs are available for $\mathrm{X} 460-\mathrm{G} 2$ series switches:

- VIM-2q Ethernet Module with $2 \times 40 \mathrm{G}$ ports.
- VIM-2ss SummitStack Module
- VIM-2t Ethernet Module with 2×10 GBASE-T ports.
- VIM-2x Ethernet Module with 2×10 GSFP+ ports.
- TM-CLK Clock Module to support SyncE and 1588

You can form stacks with X460-G2 switches using some or all of these VIMs. However, not all VIMs support stacking on all X460-G2 switch models. For details, see Summit X460-G2 Stacking on page 222.

Warning

The switch must be powered off before you install any interface module options (VIMs or Clock Modules). The interface module options are not hot swappable.

Note

If you do not plan to use the TM-CLK Clock Module, a grounding screw (16714) is available that can be inserted into the TM-CLK slot.

For more information on X460-G2 VIM and Clock module options, see Optional Ports for the X460-G2 Series Switches on page 180.

Summit X460-G2-24t-GE4 Switch Ports and Slots

The Summit X460-G2-24t-GE4 switch ports and slots include:

- 24 front panel ports of 10/100/1000BASE-T (ports 1-24, four of which are shared with SFP ports).
- Four front panel combo (shared) SFP ports and four dedicated SFP ports (100/1000BASE-X).
- Four front panel ports of 1GBASE-X SFP (ports 29-32).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 118: Summit X460-G2-24t-GE4 Front Panel

$1=$ Stack number indicator	$5=$ Combo ports
$2=$ Console port/Ethernet management port	$6=$ SFP ports
$3=$ USB port	$7=$ SFP 1GBASE-X ports
$4=10 / 100 / 1000 B A S E-T$ ports	

Figure 119: Summit X460-G2-24t-GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-24t-10GE4 Switch Ports and Slots

The Summit X460-G2-24t-10GE4 switch ports and slots include:

- 24 front panel ports of 10/100/1000BASE-T (ports 1-24, four of which are shared with SFP ports).
- Four front panel combo (shared) SFP ports and four dedicated SFP ports (100/1000BASE-X).
- Four front panel ports of 10GBASE-X SFP+ (ports 29-32, with two of these ports configurable to be stacking ports).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 120: Summit X460-G2-24t-10GE4 Front Panel

1 = Stack number indicator	$5=$ Combo ports
2 = Console port/Ethernet management port	$6=$ SFP ports
3 = USB port	$7=$ SFP+ 10GBASE-X ports
$4=10 / 100 / 1000 B A S E-T$ ports	

Figure 121: Summit X460-G2-24t-10GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	$5=$ Power supply slot
3 = Fan module slot	

Summit X460-G2-24x-10GE4 Switch Ports and Slots

The Summit X460-G2-24x-10GE4 switch ports and slots include:

- 24 front panel ports of 100/1000BASE-X (ports 1-24, four of which are shared with 10/100/1000BASE-T ports).
- Four front panel combo (shared) 10/100/1000BASE-T ports and four dedicated 10/100/1000BASE-T ports.
- Four front panel ports of 10GBASE-X SFP+ (ports 29-32, with two of these ports configurable to be stacking ports).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 122: Summit X460-G2-24x-10GE4 Front Panel

1 = Stack number indicator	$5=$ Combo ports
$2=$ Console port/Ethernet management port	$6=10 / 100 / 1000 B A S E-T$ ports
$3=$ USB port	$7=$ SFP+10GBASE-X ports
$4=10 / 100 / 1000 B A S E-X$ ports	

Figure 123: Summit X460-G2-24x-10GE4 Rear Panel

1 = TM-CLK (clock) slot cover	4 = Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-24p-GE4 Switch Ports and Slots

The Summit X460-G2-24p-GE4 switch ports and slots include:

- 24 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-24, four of which are shared with SFP ports).
- Four front panel combo (shared) SFP ports and four dedicated SFP ports (100/1000BASE-X).
- Four front panel ports of 1GBASE-X SFP (ports 29-32).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 124: Summit X460-G2-24p-GE4 Front Panel

$1=$ Stack number indicator	$5=$ Combo ports
$2=$ Console port/Ethernet management port	$6=$ SFP ports
$3=$ USB port	$7=$ SFP 1GBASE-X ports
$4=$ PoE $+10 / 100 / 1000 B A S E-T$ ports	

Figure 125: Summit X460-G2-24p-GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-24p-10GE4 Switch Ports and Slots

The Summit X460-G2-24p-10GE4 switch ports and slots include:

- 24 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-24, four of which are shared with SFP ports).
- Four front panel combo SFP ports and four dedicated SFP ports (100/1000BASE-X).
- Four front panel ports of 10GBASE-X SFP+ (ports 29-32, with two of these ports configurable to be stacking ports).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 126: Summit X460-G2-24p-10GE4 Front Panel

1 = Stack number indicator	$5=$ Combo ports
$2=$ Console port/Ethernet management port	$6=$ SFP ports
3 = USB port	$7=$ SFP+ 10GBASE-X ports
$4=$ PoE $+10 / 100 / 1000 B A S E-T$ ports	

Figure 127: Summit X460-G2-24p-10GE4 Rear Panel

1 = TM-CLK (clock) slot cover	4 = Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-48t-GE4 Switch Ports and Slots

The Summit X460-G2-48t-GE4 switch ports and slots include:

- 48 front panel ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 1GBASE-X SFP (ports 49-52).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 128: Summit X460-G2-48t-GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000$ BASE-T ports
2 = Console port/Ethernet management port	$5=$ SFP 1GBASE-X ports
3 = USB port	

Figure 129: Summit X460-G2-48t-GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-48t-10GE4 Switch Ports and Slots

The Summit X460-G2-48t-10GE4 switch ports and slots include:

- 48 front panel ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 10GBASE-X SFP+ (ports 49-52, with two of these ports configurable to be stacking ports)
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 130: Summit X460-G2-48t-10GE4 Front Panel

1 = Stack number indicator	$4=10 / 100 / 1000 B A S E-T$ ports
2 = Console port/Ethernet management port	$5=$ SFP+10GBASE-X ports
3 = USB port	

Figure 131: Summit X460-G2-48t-10GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	$5=$ Power supply slot
3 = Fan module slot	

Summit X460-G2-48x-10GE4 Switch Ports and Slots

The Summit X460-G2-48x-10GE4 switch ports and slots include:

- 48 front panel ports of 100/1000BASE-X (ports 1-48).
- Four front panel ports of 10 GBASE-X SFP+ (ports 49-52, with two of these ports configurable to be stacking ports).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 132: Summit X460-G2-48x-10GE4 Front Panel

1 = Stack number indicator	$4=100 / 1000 B A S E-X$ ports
$2=$ Console port/Ethernet management port	$5=$ SFP $+10 G B A S E-X$ ports
3 = USB port	

Figure 133: Summit X460-G2-48x-10GE4 Rear Panel

1 = TM-CLK (clock) slot cover	4 = Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-48p-GE4 Switch Ports and Slots

The Summit X460-G2-48p-GE4 switch ports and slots include:

- 48 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of 1GBASE-X SFP (ports 49-52).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 134: Summit X460-G2-48p-GE4 Front Panel

1 = USB port	$4=$ PoE+ 10/100/1000BASE-T ports
2 = Stack number indicator	$5=$ SFP 1GBASE-X ports
3 = Console port/Ethernet management port	

Figure 135: Summit X460-G2-48p-GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	$4=$ Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

Summit X460-G2-48p-10GE4 Switch Ports and Slots

The Summit X460-G2-48p-10GE4 switch ports and slots include:

- 48 front panel PoE+ ports of 10/100/1000BASE-T (ports 1-48).
- Four front panel ports of $10 G B A S E-X$ SFP+ (ports 49-52, with two of these ports configurable to be stacking ports).
- One front panel USB port.
- Ethernet management port $1 \times 10 / 100 / 1000 B A S E-T$.
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- One rear panel VIM slot.
- One rear panel TM-CLK (clock) slot.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- One rear slot for fan module with front-to-back or back-to-front airflow.

Figure 136: Summit X460-G2-48p-10GE4 Front Panel

$1=$ USB port	$4=$ PoE $+10 / 100 / 1000 B A S E-T$ ports
2 = Stack number indicator	$5=$ SFP+ 10GBASE-X ports
3 = Console port/Ethernet management port	

Figure 137: Summit X460-G2-48p-10GE4 Rear Panel

$1=$ TM-CLK (clock) slot cover	4 = Blank power supply cover
$2=$ VIM slot cover	5 = Power supply slot
3 = Fan module slot	

ExtremeSwitching and Summit X460-G2 Series Switch LEDs

Table 41 describes the meanings of the front-panel LEDs on all Summit $\times 460-\mathrm{G} 2$ series switches.

Table 41: X460-G2 Front Panel LEDs

Label or Type	Color/State	Meaning
M (Management)	Slow blinking green (1 Hz)	Normal operation
	Fast blinking green (2 Hz)	Power-on self test (POST) in progress or Switch diagnostics are running
	Steady green	POST passed; system is booting image
	Blinking amber	System is disabled: POST failed or system overheated
	Off	No external power is attached
S1, S2 (Stack Management)	Steady green	Link OK on the indicated stacking port
	Blinking green	Activity on the indicated stacking port
FAN	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
$\begin{aligned} & \text { P1, P2 } \\ & \text { (Power Supply) } \end{aligned}$	Steady green	Normal operation
	Steady amber	Non-PoE models: PSU present, but no input power PoE models: Not supported
	Blinking amber	Power failure
	Off	No power is attached
Ethernet Port 1-32 or 1-52	Steady green	Link OK
	Blinking green	Activity on the indicated port
	Off	No link or port disabled

Table 41: X460-G2 Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
1G SFP ports or 10G SFP+	Steady green	Link OK
ports 29, 30, 31, and 32 or	Blinking green	Activity on the indicated port
$53,54,55$, and 56	Off	No 1G or 10G link, or port disabled

Table 42 describes the meanings of additional port LEDs on the following Summit X460-G2 PoE switch models:

- X460-G2-24p-GE4
- X460-G2-24p-10GE4
- X460-G2-48p-GE4
- X460-G2-48p-10GE4

Table 42: Additional Port LED Meanings for PoE Switches

Label or Type	Color/State	Meaning
All front panel ports 1-24 or 1-48	Steady green	Link is OK; port is not powered
	Steady amber	Link is OK; port is powered; no traffic
	Blinking green	Link is OK and transmitting packets; port is not powered
	Blinking amber	Link is OK and transmitting packets; port is powered
	Slow blinking amber	No link, or disabled port; port is powered
	Alternating amber and green	Port has a power fault
	Off	Port is not powered, has no link, or is disabled

Table 43 describes the meanings of the two-digit stack number indicator on all Summit X460-G2 series switches.

Table 43: Summit X460-G2 two-digit Stack Number Indicator

Summit X480 Series Switches

The Summit X480 series switches are 24-port or 48-port switches that provide Ethernet connectivity using fixed 10/100/1000BASE-T RJ45 ports, installable SFP optical modules, or installable XFP optical modules. The Summit X480 series switches include the following base models:

- Summit X480-24x Switch Ports and Slots on page 121
- Summit X480-48t Switch Ports and Slots on page 122
- Summit X480-48x Switch Ports and Slots on page 123

Summit X 480 series switches require an ExtremeXOS version of at least 12.4.1 but not greater than 16.x.
A serial console port on the front panel of the Summit $X 480$ series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

The rear panel of the switch provides a slot for an installed option card called a versatile interface module or VIM. The VIMs allow you to add high-speed data ports or stacking ports to the switch. The following table lists the available VIM types for the Summit X480 series switches.

Note

Only VIM2 modules are compatible with the Summit X480 switches. Other VIM types that may appear to be mechanically compatible with the Summit X 480 switches will not function if they are installed in these switches.

Table 44: Versatile Interface Modules for Summit X480 Series Switches

VIM Model	Number of Ports	Port Type	For More Information
VIM2-10G4X	4	10-Gbps XFP data	VIM2-10G4X Versatile Interface Module on page 170
VIM2-SummitStack	2	20-Gbps stacking	VIM2-SummitStack Versatile Interface Module on page 171
VIM2-SummitStack128	2	64-Gbps stacking	VIM2-SummitStack128 Versatile Interface Module on page 172
VIM2-SummitStack-V80	2	40-Gbps stacking	VIM2-SummitStack-V80 Versatile Interface Module on page 172

Switch cooling is provided by a replaceable fan module. Two power supply bays accommodate either AC or DC power supplies.

Summit X480-24x Switch Ports and Slots

The front panel of the Summit X480-24x switch includes:

- Twelve autosensing 100/1000BASE-X ports (ports 1-12) that provide 12 Gbps of high-density fiber (SFP) connectivity.
- Twelve combination ports (ports 13-24) using RJ45 connectors or SFPs to provide 12 Gbps of copper or fiber connectivity. The SFP ports support both 100BASE-X and 1000BASE-X optical modules. For more information about combination ports, see Combination Ports and Failover on page 12. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- Two unpopulated 10-Gbps XFP-based ports.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X480 Series Switch LEDs on page 124.
- Stack number indicator.

Figure 138: Summit X480-24x Switch Front Panel

The rear panel of the Summit X480-24x switch (Figure 139 on page 122) includes:

- Slot for a VIM2 versatile interface module (see Versatile Interface Modules for the Summit X480 Series Switches on page 170).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 450 W AC and DC Power Supplies on page 161).

Figure 139: Summit X480-24t Rear Panel

Summit X480-48t Switch Ports and Slots

The front panel of the Summit X480-48t switch includes:

- Forty-four fixed 10/100/1000BASE-T autosensing ports (ports 1-44) that provide 44 Gbps of highdensity copper connectivity.
- Four combination ports (ports 45-48) using RJ45 connectors or SFPs to provide 4 Gbps of copper or fiber connectivity. The SFP ports support both 100BASE-X and 1000BASE-X optical modules. For
more information about combination ports, see Combination Ports and Failover on page 12. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X480 Series Switch LEDs on page 124.
- Stack number indicator.

Figure 140: Summit X480-48t Switch Front Panel
The rear panel of the Summit X480-48t switch (Figure 141 on page 123) includes:

- Slot for a VIM2 versatile interface module (see Versatile Interface Modules for the Summit X480 Series Switches on page 170).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 450 W AC and DC Power Supplies on page 161).

Figure 141: Summit X480-48t Rear Panel

Summit X480-48x Switch Ports and Slots

The front panel of the Summit X480-48x switch includes:

- Forty-eight 100/1000BASE-X SFP ports that provide 48 Gbps of high-density fiber connectivity. For information about SFPs, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X480 Series Switch LEDs on page 124.
- Stack number indicator.

Figure 142: Summit X480-48x Switch Front Panel
The rear panel of the Summit X480-48x switch (Figure 143 on page 124) includes:

- Slot for a VIM2 versatile interface module (see Versatile Interface Modules for the Summit X480 Series Switches on page 170).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 450 W AC and DC Power Supplies on page 161).

Figure 143: Summit X480-48x Rear Panel

Summit X480 Series Switch LEDs

The following sections describe the meanings of the LEDs on Summit X480 switches.

Table 45: Front Panel LEDs

Label or Type	Color/State	
	Blinking green (slow)	Normal operation
	Blinking green (rapid)	Switch is booting; power-on self test (POST) is in progress.
	Blinking amber	Power-on self test (POST) failed.
	Off (FAN and PSU are also off.)	No external power is attached.
	Off (FAN and PSU are lit.)	Switch is booting.
FAN	Steady green	Normal operation
	Blinking green (rapid)	Power-on self test (POST) is in progress.
	Blinking amber	Failure
	Off	No power

Table 45: Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power; no power supply present.
PSU-2	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power; no power supply present.
Stack Management 1-4	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.

Table 46: 2-digit Stack number Indicator

Label or Type		Color/State
Left digit (1)	Reserved for future use.	
Right digit (1-8) Indicates the position of this switch in the SummitStack configuration.	Upper half blinking	This switch is the stack master node.
	Lower half blinking	This switch is the stack backup node.
Ethernet Ports $1-24$ or $1-48$	Lit steadily	This switch is a standby node in the stack.
	Steady green	Link OK
	Blinking green	Activity
	Off	No link; port is disabled.

Table 47: Management Port

Label or Type	Color/State	Meaning
	Blinking green	Activity
	Off	No link; 10/100-Mbps link
Right LED	Steady green	1-Gbps link
	Off	No link; 10/100-Mbps link

Table 48: Back Panel

Label or Type	Color/State	Meaning
	Steady green	Link OK
	Blinking green	Activity
XFP Port LED (on installed VIM)	Steady green	Link OK
	Blinking green	Activity
	Off	Port is disabled.

Summit X650 Series Switches

The Summit X650 series switches have 24 front-panel Ethernet ports that provide 10-gigabit Ethernet connectivity using fixed 10GBASE-T RJ45 ports or installable SFP+ optical modules. The Summit X650 series switches include the following base models:

- Summit X650-24t Switch Ports and Slots on page 126
- Summit X650-24x Switch Ports and Slots on page 127

The X650-24t switch requires an ExtremeXOS version of at least 12.2 .1 but not greater than 15.3.x. The X650-24x switch requires an ExtremeXOS version of at least 12.2.2 but not greater than 15.3.x.

A serial console port on the front panel of the Summit $X 650$ series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

The rear panel of the switch requires an installed versatile interface module or VIM. The following table lists the types of VIM available for the Summit X650 series switch.

Table 49: Versatile Interface Modules for Summit X650 Series Switches

VIM Model	Number of Ports	Port Type	More Information
VIM1-SummitStack	2	20-Gbps stacking 1-Gbps SFP data	VIM1-SummitStack Versatile Interface Module on page 174
VIM1-10G8X	2 8	20-Gbps stacking 10-Gbps SFP+ data	VIM1-10G8X Versatile Interface Module on page 174
VIM1-SummitStack512	4	128-Gbps stacking	VIM1-SummitStack512 Versatile Interface Module on page 176
VIM1-SummitStack256	2	128-Gbps stacking	VIM1-SummitStack256 Versatile Interface Module on page 175
VIM3-40G4X	4	40-Gbps QSFP+ data	VIM3-40G4X Versatile Interface Module on page 176

The Summit X 650 series switch must have an installed VIM; the switch will not operate correctly and enter into reboot loop without a VIM.

Note

The Summit X650 switches require VIM1 or VIM3 modules. Other VIM types that may appear to be mechanically compatible with the Summit X650 switches will not function if they are installed in these switches.

Cooling is provided by a replaceable fan module. Two power supply bays accommodate either AC or DC power supplies.

Summit X650-24t Switch Ports and Slots

The front panel of the Summit X650-24t switch includes:

- Twenty-four fixed autosensing 1000/10000 BASE-T ports (ports 1-24) that provide high-density copper connectivity.
- 10/100/1000 Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit $\times 650$ Series Switch LEDs on page 128.

- Stack number indicator.

Figure 144: Summit X650-24t Front Panel
The rear panel of the Summit X650-24t switch (Figure 145 on page 127) includes:

- Installed VIM1 versatile interface module (VIM1-SummitStack shown) (see Versatile Interface Modules for the Summit X650 Series Switches on page 173).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 850 W AC and DC Power Supplies on page 163).

Figure 145: Summit X650-24t Rear Panel

Summit X650-24x Switch Ports and Slots

The front panel of the Summit X650-24x switch includes:

- Twenty-four ports that can use 10GBASE-X SFP+ optical modules. (Ports 1-24 can also be populated with 1000BASE-X SFP modules.)

For information about supported optical modules, see the latest version of the ExtremeXOS Release Notes.

- 10/100/1000 Mbps management port.
- Console port.
- LEDs to indicate port status and switch operating conditions.

For a description of the LEDs and their operation, see Summit X650 Series Switch LEDs on page 128.

- Stack number indicator.

Figure 146: Summit X650-24x Front Panel
The rear panel of the Summit X650-24x switch (Figure 147 on page 128) includes:

- Installed VIM1 versatile interface module (VIM1-SummitStack shown) (see Versatile Interface Modules for the Summit X650 Series Switches on page 173).
- Replaceable fan tray.
- Two power supply bays for either AC or DC power supplies (see Summit 850 W AC and DC Power Supplies on page 163).

Figure 147: Summit X650-24x Rear Panel

Summit X650 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X650 series switches.

Table 50: Front Panel LEDs

Label or Type	Color/State	
	Blinking green	Normal operation
	Blinking amber	Power-on self test (POST) failed; diagnostic test in progress.
	Off	No external power is attached.
FAN	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power

Table 50: Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
PSU-2	Steady green	Normal operation
	Blinking amber	Failure
	Off	No power
Stack 1-4	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.

Table 51: 2-digit Stack number Indicator

Label or Type	Meaning	
	Reserved for future use.	
Right digit (1-8)	Indicates the position of this switch in the SummitStack configuration.	
	Upper half blinking	This switch is the stack master node.
	Lower half blinking	This switch is the stack backup node.
	Lit steadily	This switch is a standby node in the stack.
Ethernet Ports $1-24$	Steady green	Link OK
	Blinking green	Steady green
	Blinking green	Link OK

Table 52: Back Panel

Label or Type	Meaning	
	Steady green	Link OK
	Blinking green	Activity
SFP/SFP+ port LED (on installed VIM1 module)	Steady green	Link OK
	Blinking green	Activity

Summit X670 Series Switches

The Summit X670 series switches have 48 front-panel Ethernet ports that can provide 10-gigabit Ethernet connectivity using copper ports or installable SFP+ optical modules.

The Summit X670 series switches have 48 front-panel Ethernet ports that provide 10-gigabit Ethernet connectivity using installable SFP+ optical modules. The Summit X670 series switches include the following base models:

- Summit X670-48x Switch Ports and Slots on page 131
- Summit X670V-48× Switch Ports and Slots on page 133
- Summit X670V-48t Switch Ports and Slots on page 132

The minimum required ExtremeXOS version for Summit X670 series switches varies by model. (See the Extreme Hardware/Software Compatibility and Recommendation Matrices for details.) The ExtremeXOS version cannot be greater than 16.x.

Each base model is available with either front-to-back or back-to-front cooling. There is no operational difference between these switch versions.

The Summit X670-48x and Summit 670V-48x have SFP+ ports support dual interface speeds of Gigabit Ethernet and 10-Gigabit Ethernet. SFP+ ports can accept both gigabit SFP and 10 gigabit SFP, and depending upon the pluggable optics you choose, SFP+ modules can work in both modes.

The Summit X670V-48t has 10G BASE-T copper ports. The switch also has fiber combination ports that support dual interface speeds of Gigabit Ethernet and 10-Gigabit Ethernet.

A serial console port on the front panel of the Summit $X 670$ series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

The X670-48x and X670V-48x models are equipped with a motion sensor. A motion sensor on the front of the switch allows you to control the power to the port LEDs. When the motion sensor is enabled, the port LEDs are turned off if motion is not detected during a specified amount of time. When motion is detected, the port LEDs are turned back on. You can adjust how long the LEDs stay lit after motion is detected. When the motion sensor is disabled, the port LEDs are always on.

Note

The X670V-48t switch does not have a motion sensor.

The rear panel of the Summit X670V-48t and the $\mathrm{X} 670 \mathrm{~V}-48 \mathrm{x}$ switches provides a slot for an option card called a versatile interface module or VIM. The VIM4-40G4X (Part No. 17122) module adds four QSFP+based 40-Gbps ports to the Summit X670V series switches.

Note

Only VIM4 modules are compatible with the Summit X670 series switches. Other VIM types that may appear to be mechanically compatible with the Summit X670 series switches will not function if they are installed in these switches.

Switch cooling is provided by three replaceable fan modules. Fan modules are available in two different models that direct the airflow either from front to back or from back to front. All five installed fan modules must be of the same model, so that they all direct the airflow in the same direction.
Note
Ensure that all fan module slots are filled when the switch is powered on. Fan modules can be
hot-swapped after power has been turned on.

Two power supply bays accommodate either AC or DC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fans. Like the fan modules, the power supplies are available in models with either front-to-back or back-to-front cooling airflow.

Note

Air must flow in the same direction for all installed fan modules and power supplies in a switch.

Summit X670-48x Switch Ports and Slots

The front panel of the Summit X670-48x switch includes:

- Forty-eight unpopulated optical ports that can accommodate 10GBASE-X SFP+ or 1000BASE-X SFP optical modules to provide high-density fiber connectivity. For information about SFP+ and SFP optical modules, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000-Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- USB port for access to external storage.
- Motion sensor.
- Grounding stud.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X670 Series Switch LEDs on page 134.
- Stack number indicator.

Figure 148: Summit X670-48x Front Panel
The rear panel of the Summit X670-48x switch (Figure 149) includes:

- Three replaceable fan modules.
- Two power supply bays for either AC or DC power supplies (see Summit 450 W AC and DC Power Supplies on page 161 and Summit 550 W AC and DC Power Supplies on page 161).

Figure 149: Summit X670-48x Rear Panel

Summit X670V-48t Switch Ports and Slots

The front panel of the Summit X670V-48t switch includes:

- Forty-four 100/1000/10000 BASE-T copper ports plus four combo ports of 10G BASE-X SFP+ and 10G BASE-T (1G/10G dual speed for the combo ports), For information about SFP+ and SFP optical modules, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000-Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- Grounding stud.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X670 Series Switch LEDs on page 134.
- Stack number indicator.

Figure 150: Summit X670V-48t Front Panel

1 = Stack number indicator	$4=10 \mathrm{G}$ BASE-T (100 Mbps/1G/10G Tri-speed) ports
2 = Console port	$5=$ SFP+ ports
3 = Ethernet management port	$6=$ Combination ports (1G/10G only)

The rear panel of the Summit X670-48t switch (Figure 151 on page 133) includes:

- Slot for a VIM4-40G4X versatile interface module (see VIM4-40G4X Versatile Interface Module for the Summit X670 Switch on page 184).
- Three replaceable fan modules.
- Two power supply bays for either AC or DC power supplies (see Summit 550 W AC and DC Power Supplies on page 161).

Figure 151: Summit X670V-48t Rear Panel

Summit X670V-48x Switch Ports and Slots

The front panel of the Summit X670V-48x switch includes:

- Forty-eight unpopulated optical ports that can accommodate 10GBASE-X SFP+ or 1000BASE-X SFP optical modules to provide high-density fiber connectivity. For information about SFP+ and SFP optical modules, see the Extreme Networks Pluggable Transceivers Installation Guide.
- 10/100/1000-Mbps management port.
- Serial console port used to connect a terminal and perform local management.
- USB port for access to external storage.
- Motion sensor.
- Grounding stud.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X670 Series Switch LEDs on page 134.
- Stack number indicator.

Figure 152: Summit X670V-48x Front Panel
The rear panel of the Summit X670-48x switch includes:

- Slot for a VIM4-40G4X versatile interface module (see VIM4-40G4X Versatile Interface Module for the Summit $\times 670$ Switch on page 184).
- Three replaceable fan modules.
- Two power supply bays for either AC or DC power supplies (see Summit 450 W AC and DC Power Supplies on page 161 and Summit 550 W AC and DC Power Supplies on page 161).

Figure 153: Summit X670V-48x Rear Panel

Summit X670 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X670 and X670V series switches.

Table 53: Front Panel LEDs

Label or Type	Color/State	Meaning
MGT (Management)	Fast blinking green (2 Hz)	Power-on self test (POST) in progress.
	Steady green	POST passed. System is booting image.
	Slow blinking green (1 Hz)	Normal operation
	Blinking amber	Switch diagnostics are running. or System is disabled. Post failed or system overheated.
	Off	No external power is attached.
$\begin{aligned} & \text { FAN } \\ & 1,2,3 \end{aligned}$	Steady green	Normal operation.
	Blinking amber	Failure.
	Off	No power.
P1, P2 (Power Supply)	Steady green	Normal operation.
	Steady amber	Power is attached, but no power is on.
	Blinking amber	Power failure.
	Off	No power is attached.
Stack 1-4	Steady green	Link OK on the indicated stacking port.
	Blinking green	Activity on the indicated stacking port.

Table 53: Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
MD	Steady green	The motion detector feature is enabled. This LED stays lit if the motion detector feature shuts down the other LEDs on the switch.
	Blinking green (other switch LEDs are also lit)	Motion has been detected. The green blinking continues for a few seconds, and then the MD LED lights steady green.
	Blinking amber (other switch LEDs are off)	Motion has been detected. The motion detector feature turns on the other switch LEDs. The amber blinking continues for a few seconds, and then the MD LED lights steady green.
	Off	The motion detector feature is disabled.

Table 54: 2-digit Stack number Indicator

Label or Type	Color/State	Meaning
Left digit (1)	Reserved for future use.	
Right digit (1-8)	Indicates the position of this switch in the SummitStack configuration.	
	Upper half blinking	This switch is the stack master node.
	Lower half blinking	This switch is the stack backup node.
	Lit steadily	This switch is a standby node in the stack.
Ethernet Ports1-48	Steady green	Link OK
	Blinking green	Activity
	Off	No link or port disabled.
Management Port	Steady green	Link OK
	Blinking green	Activity

Table 55: Back Panel

Label or Type	Color/State	Meaning
QSFP+ port LED (on installed VIM3 module)	Steady green	Link OK
	Blinking green	Activity

Summit X670-G2 Series Switches

The Summit X670-G2 series switches have 48 or 72 front-panel Ethernet ports that can provide 10gigabit Ethernet connectivity using installable SFP+ optical modules. In addition, the X670-G2-48x-4q series switches offer four QSFP+ ports.

The Summit X670-G2 series switches include the following base models:

- Summit X670-G2-48x-4q switch
- Summit X670-G2-72x switch

Each base model is available with either front-to-back or back-to-front cooling. There is no operational difference between these switch versions.

The Summit X670-G2-48x-4q and X670-G2-72x have SFP+ ports that support dual interface speeds of Gigabit Ethernet and 10-gigabit Ethernet. SFP+ ports can accept both gigabit SFP and 10 gigabit SFP+, and depending upon the pluggable optics you choose, SFP+ ports can work in both modes.

The front panel of the X670-G2-48x-4q switch also provides four QSFP+ based 40 Gb ports. With appropriate cabling, each of the four QSFP+ ports can be partitioned into four 10 Gb ports.

A serial console port on the front panel of the Summit X670-G2 series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds.

Switch cooling is provided by replaceable fan modules. Fan modules are available in two different models that direct the airflow either from front to back or from back to front. All installed fan modules must be of the same model, so that they all direct the airflow in the same direction.

Note
Ensure that all fan module slots are filled when the switch is powered on. Fan modules can be hot-swapped after power has been turned on.

Two power supply bays accommodate either AC or DC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fans. Like the fan modules, the power supplies are available in models with either front-to-back or back-to-front cooling airflow.

Caution

Air must flow in the same direction for all installed fan modules and power supplies in a X670G2 series switch.

Summit X670-G2 series switches require ExtremeXOS version 15.6.1.4 or later, or version 21.1.1 or later.

Summit X670-G2-48x-4q Switch Ports and Slots

The Summit X670-G2-48x-4q switch ports and slots include:

- 48 fixed autosensing 10GBASE-X SFP+ ports (ports 1-48) that provide 10 Gbps high-density fiber connectivity. Two of these ports are configurable as stacking ports.
- Four 40GBASE-X unpopulated QSFP+ ports (ports 49, 53, 57, and 61 in 40 G mode or ports 49 to 64 in 10G mode) that provide 40 Gbps of fiber connectivity. Two (stacking V160 or V80) or four (stacking $V 320$) of these four ports are configurable to be stacking ports.
- Ethernet management port (10/100/1000BASE-T).
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- Front panel USB port.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- Three rear slots for fan modules with front-to-back or back-to-front airflow.
- Two rear panel mini-BNC connectors labeled OUT for connecting a Building Integrated Timing Supply (BITS) or GPS timing source:
- 1 PPS frame output
- 10 MHz output

Figure 154: Summit X670-G2-48x-4q Front Panel

1 = USB port	$4=10 G B A S E-X$ SFP+ ports
2 = Stack number indicator	$5=$ Console port
3 = Ethernet management port	$6=$ QSFP+ ports

Figure 155: Summit X670-G2-48x-4q Rear Panel

1 = BNC Timing ports	3 = Power supply
2 = Replaceable fan modules	4 = Blank power supply cover

Summit X670-G2-72x Switch Ports and Slots

The Summit X670-G2-72x switch ports and slots include:

- 72 fixed autosensing 10GBASE-X SFP+ ports (ports 1-72) that provide 10 Gbps high-density fiber connectivity. Two of these ports are configurable as stacking ports.
- Ethernet management port (10/100/1000BASE-T).
- Serial console port implemented as an RJ45 connector used to connect a terminal and perform local management.
- Rear panel USB port.
- Rear dual PSU power slots with front-to-back or back-to-front airflow.
- Five rear slots for fan modules with front-to-back or back-to-front airflow.
- Two rear panel mini-BNC connectors labeled OUT for connecting a Building Integrated Timing Supply (BITS) or GPS timing source:
- 1 PPS frame output
- 10 MHz output

Figure 156: Summit X670-G2-72x Front Panel

1 = Stack number indicator	$3=10$ GBASE-X SFP+ ports
2 = Ethernet management port/console port	

Figure 157: Summit X670-G2-72x Rear Panel

1 = BNC Timing ports	3 = Power supplies
2 = Replaceable fan modules	$4=$ USB port

Summit X670-G2 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X670-G2 series switches.

Table 56: X670-G2 Front Panel LEDs

Label or Type	Color/State	Meaning
M (Management)	Slow blinking green (1 Hz)	Normal operation
	Fast blinking green (2 Hz)	Power-on self test (POST) in progress or Switch diagnostics are running
	Steady green	POST passed: system is booting image
	Blinking amber	System is disabled: POST failed or system overheated
	Off	No external power is attached
$\begin{aligned} & \text { FAN } \\ & 1,2,3,4,5 \end{aligned}$	Steady green	Normal operation.
	Blinking amber	Failure.
	Off	No power.

Table 56: X670-G2 Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
P1, P2 (Power Supply)	Steady green	Normal operation.
	Steady amber	Plinking amber
	Off	Power is attached, but no power is on.
Ethernet Port 1-48 or 1-72	Steady green	No power is attached.
	Blinking green	Off
670-G2-48x-4q QSFP+ ports 40G 61)	Steady blue	
670-G2-48x-4q QSFP+ ports 10G mode (49-54,	Slinking blue Sctivity on the indicated port. Blinking green	No link or port disabled.

Table 57: Summit X670-G2 2-digit Stack Number Indicator

Label or Type	Color/State	Meaning
Left digit (1)	Reserved for future use.	
Right digit $(1-8)$	Indicates the position of this switch in the SummitStack configuration.	
	Upper half blinking	This switch is the stack master node.
	Lower half blinking	This switch is the stack backup node.
	Lit steadily	This switch is a standby node in the stack.

Summit X770 Series Switches

The Summit X770 series switches have 32 front-panel Ethernet ports that can provide 40-gigabit Ethernet connectivity using installable QSFP+ optical modules. The ports can operate in 40-gigabit mode, or with appropriate optical modules can be partitioned into 10-gigabit data lanes. Both native stacking and alternate stacking are supported using the front panel-ports.

For details on port data capacity and numbering, see Summit $\times 770-32$ q Switch Ports and Slots on page 140.

The Summit X770 provides latency less than 600 nanoseconds and supports cut-through switching to help optimize high frequency trading applications as well as latency sensitive cluster computing.

Each base model is available with either front-to-back or back-to-front cooling. There is no operational difference between these switch versions.

A serial console port on the front panel of the Summit X770-32q series switch allows you to connect a terminal and perform local management. An Ethernet management port can be used to connect the system to a parallel management network for administration. Alternatively, you can use an Ethernet
cable to connect this port directly to a laptop to view and locally manage the switch configuration. The Ethernet management port supports 10/100/1000 Mbps speeds. There is also a USB port.

The X770 also supports Boundary Clock (BC), Transparent Clock (TC), and Ordinary Clock (OC) protocols for synchronizing phase and frequency, and allowing the network and the connected devices to be synchronized down to microseconds of accuracy over Ethernet connections.

Switch cooling is provided by five hot-swappable fan modules providing $N+1$ redundancy. Fan modules are available in two different models that direct the airflow either from front to back or from back to front. All five installed fan modules must be of the same model, so that they all direct the airflow in the same direction.

Note

Ensure that all fan module slots are filled when the switch is powered on. Fan modules can be hot-swapped after power has been turned on.

Two power supply bays accommodate either AC or DC power supplies. Power supplies have integrated cooling fans that operate independently of the switch fans. Like the fan modules, the power supplies are available in models with either front-to-back or back-to-front cooling airflow.

Note

Air must flow in the same direction for all installed fan modules and power supplies in a switch.

Summit X770 series switches require ExtremeXOS version 15.4.1.3 or later, or version 21.1.1 or later.

Summit X770-32q Switch Ports and Slots

The front panel of the Summit $\times 770-32$ q switch includes:

- 32 40-gigabit Ethernet ports capable of supporting passive copper QSFP+ and active fiber QSFP+.

With quad fan-out SFP+ cables, the QSFP+ ports can be partitioned into 10-gigabit data lanes: 24 of the ports can be partitioned into four 10-gigabit data lanes, and the remaining eight ports can be used as single 10-gigabit data lanes. This yields a total of 104 10-gigabit ports as shown in Figure 158:

Figure 158: X770 Port Numbers for 10G mode and 40G Mode

For information about QSFP+ optical modules, see the Extreme Networks Pluggable Transceivers Installation Guide.

- Groups of two or four ports configurable to be stacking ports as shown in the following table:

Table 58: X770 Stacking Method and Ports

Stacking Method	Ports
SummitStack-V	103 and 104
SummitStack-V160	103 and 104
SummitStack-V-320	101 and 103, 102 and 104

When ports are used for stacking they are not available for normal Ethernet connectivity. For more information about stacking, see Building Stacks on page 202.

- Management port (10/100/1000-Mbps).
- Front panel USB port for access to external storage.
- RJ45 RS-232c serial console port used to connect a terminal and perform local management.
- LEDs to indicate port status and switch operating conditions. For a description of the LEDs and their operation, see Summit X770 Series Switch LEDs on page 142.
- Stack number indicator.

[^1]| 2 = Stack number indicator | 5 = Console port |
| :--- | :--- |
| 3 = Management port | $6=$ Stacking ports |

The rear panel of the Summit X770-32q switch includes:

- Five replaceable fan modules
- Two power supply bays for either AC or DC power supplies (see Summit 550 W AC and DC Power Supplies on page 161).
- Two mini-BNC connectors labeled OUT for connecting a Building Integrated Timing Supply (BITS) or GPS timing source:
- 1 PPS frame output
- 10 MHz output

1 = Fan modules	$3=$ mini-BNC connectors
2 = Power supply	

Summit X770 Series Switch LEDs

The following sections describe the meanings of the LEDs on the Summit X770 series switches.

Table 59: X770 Front Panel LEDs

Label or Type	Color/State	Meaning
M (Management)	Slow blinking green $(1 \mathrm{~Hz})$	Normal operation
	Fast blinking green $(2 \mathrm{~Hz})$	Power-on self test (POST) in progress or Switch diagnostics are running
	Steady green POST passed: system is booting image Blinking amber System is disabled: POST failed or system overheated FAN $1,2,3,4,5$ Steady green No external power is attached Blinking amber Normal operation. Off Failure. No power.	

Table 59: X770 Front Panel LEDs (continued)

Label or Type	Color/State	Meaning
P1, P2 (Power Supply)	Steady green	Normal operation.
	Steady amber	Power is attached, but no power is on.
	Blinking amber	Power failure.
	Off	No power is attached.
Ethernet Ports 40G mode 1, $5,9,13,17,21,25,29,33,37$, $41,45,49,5051,52,53,57$, $61,65,69,73,77,81,85,89$, $93,97,101,102,103,104$	Steady blue	Link OK.
	Blinking blue	Activity on the indicated port.
	Off	No link or port disabled.
Ethernet Ports 10G mode1-104	Steady green	Link OK
	Blinking green	Activity on the indicated port
	Off	No 10G link or port disabled.

Table 60: 2-digit Stack Number Indicator

Label or Type	Color/State	Meaning
Left digit (1)	Reserved for future use.	
Right digit (1-8)	Indicates the position of this switch in the SummitStack configuration.	
	Upper half blinking	This switch is the stack master node.
	Lower half blinking	This switch is the stack backup node.
	Lit steadily	This switch is a standby node in the stack.
Stacking Ports 40G mode (V160 and V320 stacking) ports 101, 102, 103, and 104	Steady blue	Link OK
	Blinking blue	Activity
	Off	No link or port disabled.
Stacking Ports 10G mode (Alternate stacking) ports 103 and 104	Steady green	Link OK
	Blinking green	Activity
	Off	No link or port disabled

Pluggable Interfaces for Summit Switches

Many Summit switches include ports that are compatible with a variety of optical modules, including SFP, SFP+, QSFP+, and XFP modules. Extreme Networks optical modules are tested to work in all supported Extreme Networks devices. We recommend that all customers use Extreme Networks optical modules in their Extreme Networks devices.

Extreme Networks assumes no liability for third-party optical modules. Although Extreme Networks does not block third-party optical modules, we cannot ensure that all third-party optical modules operate properly in all Extreme Networks devices. The customer assumes all risks associated with using third-party optical modules in Extreme Networks devices.

For more information, refer to Extreme Networks Pluggable Transceivers Installation Guide.

2 Power Supplies for Use with Summit Switches

External Power Supplies for Summit Switches

Replaceable Internal Power Supplies for Summit Switches

Many Summit switches are shipped with an internal power supply that supplies all of the power needed for most switch operation. The internal power supply is fixed on some models and replaceable on other models. (See Replaceable Internal Power Supplies for Summit Switches on page 159.)

Other switches, such as the X450-G2 and the $\mathrm{X} 460-\mathrm{G} 2$, require power supplies to be ordered separately.

An optional redundant power supply can be added to most models to protect against a power supply failure and to provide increased support for PoE (Power over Ethernet) operation on applicable switches.

The following Summit switches use external power supplies for redundancy:

- Summit X150
- Summit X250e
- Summit X350
- Summit X440
- Summit X450
- Summit X450a
- Summit X450e
- Summit X450-G2 (non-PoE models)

The following switches provide power redundancy by installing a second replaceable power supply:

- Summit X450-G2 (PoE models)
- Summit X460
- Summit X460-G2
- Summit X480
- Summit X650
- Summit X670
- Summit X670-G2
- Summit X770

External Power Supplies for Summit Switches

The following tables list the compatible power supply models for Summit switches that use external power supplies for redundancy.

Table 61: External Power Supplies for X150 Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X150-24t	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X150-24x	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X150-24p	EPS-500 External Power Supply Unit	EPS-500: 10911
X150-48t	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906

Table 62: External Power Supplies for X250e Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X250e-24t	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X250e-24p	EPS-500 External Power Supply Unit	EPS-500: 10911
X250e-24x	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X250e-48t	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X250e-48p	EPS-600LS External Power Module with EPS-C chassis	EPS-600LS: 10913 EPS-C: 10912
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936

Table 63: External Power Supplies for X350 Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X350-24t	EPS-500 External Power Supply Unit	EPS-500: 10911
X350-48x	EPS-500 External Power Supply Unit	EPS-500: 10911

Table 64: External Power Supplies for X440 Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X440-24t	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
X440-L2-24t	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936

Table 64: External Power Supplies for X440 Series Switches (continued)

Switch Model	Compatible External Power Supply	Model: Part Number
X440-24p	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-24p-10G	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-48t	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-48t-10G	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-L2-48t	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-48p	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$
X440-48p-10G	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	$\begin{aligned} & 750 \text { W AC PSU: } 10931 \\ & \text { EPS-C2: } 10936 \end{aligned}$

Table 65: External Power Supplies for X450 Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X450-24t	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906
X450-24x	EPS-160 External Power Module with EPS-T	EPS-160: 10907 EPS-T: 10906

Table 66: External Power Supplies for X450a Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X450a-24t	EPS-LD External Power Supply Unit	EPS-LD: 45019
	EPS-500 External Power Supply Unit	EPS-500: 10911
X450a-24tDC	EPS-150DC External Power Module with EPS-T2	EPS-150DC: 10909 EPS-T2: 10910
	EPS-LD External Power Supply Unit	EPS-LD: 45019
	EPS-500 External Power Supply Unit	EPS-500: 10911

Table 66: External Power Supplies for X450a Series Switches (continued)

Switch Model	Compatible External Power Supply	Model: Part Number
X450a-24xDC	EPS-150DC External Power Module with EPS-T2	EPS-150DC: 10909 EPS-T2: 10910
X450a-48t	EPS-500 External Power Supply Unit	EPS-500: 10911

Table 67: External Power Supplies for X450e Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X450e-24p	EPS-LD External Power Supply Unit	EPS-LD: 45019
	EPS-500 External Power Supply Unit	EPS-500: 10911
X450e-48p EPS-600LS External Power Module with EPS C chassis	EPS-600LS: 10913 EPS-C: 10912	
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
	EPS-500 External Power Supply Unit	EPS-500: 10911
X450e-48t	EPS-500 External Power Supply Unit	EPS-500: 10911

Table 68: External Power Supplies for X450-G2 Series Switches

Switch Model	Compatible External Power Supply	Model: Part Number
X450-G2-24t-GE4	150 W Non-PoE redundant power supply	STK-RPS-150PS
	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
X450-G2-24t-10GE4	150 W Non-PoE redundant power supply	STK-RPS-150PS
	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
X450-G2-48t-GE4	150 W Non-PoE redundant power supply	STK-RPS-150PS
	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936
X450-G2-48t-10GE4	150 W Non-PoE redundant power supply	STK-RPS-150PS
	500 W PoE+ Redundant Power Supply Unit	RPS-500p: 10923
	750 W Power Supply with EPS-C2 chassis	750 W AC PSU: 10931 EPS-C2: 10936

Note
Most of the switches listed in each section of this chapter run ExtremeXOS software. For information about compatible switches running ExtremeWare software, refer to the Consolidated "i" and "e" Series Hardware Installation Guide.

EPS-150DC External Power Module (with EPS-T2)

The EPS-150DC External Power Module (Model 10909) is a modular power supply for use in the EPS-T2 External Power System Tray.

You can use the EPS-150DC as a redundant power supply with the following Extreme Networks switches:

- Summit X250e-24tDC switch
- Summit X250e-24xDC switch
- Summit X250e-48tDC switch
- Summit X450a-24tDC switch
- Summit X450a-24xDC switch
- Summit X450a-48tDC switch

When this power supply is used with one of the listed Summit switches, the internal and external power supplies are fully fault tolerant and load-sharing. If one power supply fails, the other power supply will provide sufficient power to operate the switch.

The EPS-T2 is a rack-mountable chassis or tray that holds one or two EPS-150DC power supplies. Each EPS-150DC provides one-to-one redundancy to an attached Extreme switch. You must install the EPS-150DC power supply in the EPS-T2 tray.

The front panel of the EPS-150DC unit has a green LED to indicate operating status as shown in the following table.

Power LED	Meaning
Green, solid	The external power module is operating normally.
Off	The external power module is not connected.

Note

For centralized DC power connection, this product is intended to be installed in restricted access locations (dedicated equipment rooms, equipment closets, or the like) in accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA 70.

Each EPS-150DC power supply is shipped with a special redundant power supply cord.

Figure 159: EPS-150DC Redundant Power Cord Connector

EPS-160 External Power Module (with EPS-T)

The EPS-160 External Power Module (Model 10907) is a modular power supply for use with the EPS-T chassis.

You can use the EPS-160 as a redundant power supply with the following Extreme Networks switches:

- Summit X150-24t switch
- Summit X150-24x switch
- Summit X150-48t switch
- Summit X250e-24t switch
- Summit X250e-24X switch
- Summit X250e-48t switch
- Summit X450-24t switch
- Summit X450-24X switch

The EPS-T is a rack-mountable chassis or tray that holds one or two EPS-160 power supplies. Each EPS-160 power supply provides one-to-one redundancy for an attached Extreme Networks switch.

You can order the EPS-T chassis with one or two EPS-160 power supplies already installed. You can also order an additional power supply from your Extreme Networks reseller.

The front of the EPS-160 unit has a green LED to indicate operating status, as explained in the table below.

Table 69: EPS-160 LED Indications

Power LED	Meaning
Green, solid	The external power supply is operating normally.
Off	The external power supply is not connected.

Note

An AC power input cord is not provided; you can order an appropriate cord from Extreme Networks or from your local supplier. The power cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Each EPS-160 power supply is shipped with a special redundant power supply cord.

Figure 160: EPS-160 Redundant Power Cord Connector

EPS-500 External Power Supply Unit

The Extreme Networks EPS-500 External Power Supply Unit (Model 10911) provides additional power to compatible PoE switches and other Extreme switches. You can use the EPS-500 power supply as a redundant power supply with the following Extreme Networks switches:

- Summit X150-24p switch
- Summit X250e-24p switch
- Summit X350-24t switch
- Summit X350-48t switch
- Summit X450a-24t switch
- Summit X450a-24x switch
- Summit X450a-48t switch
- Summit X450e-24p switch
- Summit X450e-24t switch
- Summit X450e-48t switch

The EPS-500 power supply provides up to 500 W of total power and up to 375 W of power dedicated to PoE applications. When this power supply is used with one of the listed Summit switches, the internal and external power supplies are fully fault tolerant and load-sharing. If one power supply fails, the other power supply will provide sufficient power to operate the switch.

The front of the EPS-500 has a green LED to indicate operating status as shown in the following table.

Power LED	Meaning
Green, solid	The external power supply is operating normally.
Off	The external power supply is not connected.

Note
An AC power input cord is not provided; you can order an appropriate cord from Extreme
Networks or from your local supplier. The power cord must meet the requirements listed in
Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Each EPS-500 power supply is shipped with a special redundant power supply cord.

Figure 161: EPS-500 Redundant Power Cord Connector

EPS-600LS External Power Module

The EPS-600LS External Power Module (Model 10913) is a 600-watt redundant power supply unit that can be used with the following Extreme Networks switches:

- Summit X450e-48p switch
- Summit X250e-48p switch

Install one, two, or three EPS-600LS power modules in the EPS-C chassis (Model 10912) to build an external redundant power system for the Summit switch. A redundant power cable shipped with the EPS-C chassis provides the connection between the external power system and the redundant power input connector on the back of the switch.

LEDs on the front panel of the EPS-C indicate operating status for the installed EPS-600LS modules as shown in the following table.

Label		Color and State
DC Good (PSU1, PSU2, and PSU3)	Green steady	Power supply is present and DC power is good.
	Off	No power.
AC Good (PSU1, PSU2, and PSU3)	Green steady	Power supply is present and AC power is good.
	Off	No power.

Note

An AC power input cord is not provided with the EPS-600LS power module. You can order an appropriate cord from Extreme Networks or from your local supplier. The power cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Each EPS-C chassis is shipped with a special redundant power supply cord for connection to the Summit switch. Make sure that the EPS-C chassis is installed in the equipment rack before installing an EPS-600LS power module.

EPS-C2 Redundant Power System

The EPS-C2 is an external power supply system that supplies redundant power to switches.
It is a standalone unit that can be rack mounted in a regular 19-inch rack system. The EPS-C2 can be populated with up to three Summit 750 W PoE AC PSUs (power supply units) to provide a total redundant power budget of up to 2040 W . The redundant power supply system can connect up to five switches to actively provide power to all five if needed.

The EPS-C2 redundant power system consists of the EPS-C2 chassis (Model 10936) plus one, two, or three installed Summit 750 W AC power supplies (Model 10931). For more information about the 750 W AC power supply including LED meanings, see Summit 750 W AC Power Supply on page 163.

The EPS-C2 system is compatible with the following switch models:

- Summit X250e-48p switch
- Summit X440-8t switch
- Summit X440-8p switch
- Summit X440-24t switch
- Summit X440-24t-10G switch
- Summit X440-24t-DC switch
- Summit X440-24p switch
- Summit X440-24p-10G switch
- Summit X440-24x switch
- Summit X440-24x-10G switch
- Summit X440-48t switch
- Summit X440-48p switch
- Summit $\times 450 \mathrm{e}-48 \mathrm{p}$ switch
- Summit X450-G2 series switches (all models)

The EPS-C2 system provides redundant power for up to five Summit $X 440$ series switches or for a single Summit X450e-48p or Summit X250e-48p switch. Redundant power connectors on the rear panel of the EPS-C2 chassis are specific to the supported switch type; a selection switch toggles between the connector type. Five 2×7 connectors are used for the $X 440$ switches, and one 2×9 connector for the other Summit switches.

The 750 W AC PoE PSU used on the EPS-C2 has two power rails: 12 V and PoE. These two power rails are independent. If the PoE rail overloads, it will shut down all PoE but the 12 V rail will continue to function. If the 12 V rail overloads, the 12 V shuts down and the PoE rail will continue to function.

One redundant 2×7 power cable is shipped with the EPS-C2 chassis to provide the connection between the external power system and the redundant power input connector on the back of a switch. Additional redundant power cables are available from Extreme Networks.

The following table lists the power capability in watts of the EPS-C2 based on the number of installed PSUs. Check the power requirements of your switches to determine how many PSUs you need to install into the EPS-C2 chassis.

	12V Power (W)	PoE Power (W)
1 PSU	300	380
2 PSUs	600	760
3 PSUs	900	1140

For technical specifications, see EPS-C2 Redundant Power Supply Technical Specifications on page 541.

EPS-C2 connectors

The EPS-C2 delivers power in the following ways.

2x7 connector

The 2×7 connector is compatible with Summit $X 440$ switches. Using the 2×7 connector, the EPS-C2 provides redundant PoE power at the same level no matter how many PSUs are installed. That is, if there are one, two, or three PSUs installed into the EPS-C2, the EPS-C2 will provide redundant PoE power capability at the same 380-watt capacity as the internal power supply of the connected switches. The PoE power supplied does not increase more than 380-watt even if additional PSUs are installed.

Internal-to-External Power Supply Transfer

When a EPS-C2 is connected to the switch and the internal power supply fails, power is drawn from the EPS-C2 without power interruption to the switch or PoE connected devices.

External-to-Internal Power Supply Transfer

When a EPS-C2 is connected to the switch and the EPS-C2 fails or is disconnected, power is drawn from the internal power supply without interruption to the switch or PoE connected devices.

2x9 connector

The 2×9 connector is compatible with the Summit X450e-48p or Summit X250e-48p switch. Unlike the function on the 2×7 connector, the PoE capability of the EPS-C2 using the 2×9 connector for the Summit X450e-48p or X250e-48p varies depending on the number of PSUs installed in the EPS-C2. The following table summarizes the PoE power provided using the 2×9 connector to a Summit X450e-48p or X250e-48p switch based on the number of installed PSUs.

Warning

The 2×9 cable is not hot-pluggable. Do not attach a powered EPS-C2 to any Summit switch using the 2×9 connector. See Installing an EPS-C2 Power Supply on page 333 for installation instructions.

Table 70: Meaning of Switch Internal Power Supply Status Indicators

Switch Internal Power Supply Status	One installed 750 W PoE PSU	Two installed 750 W PoE PSU	Three installed 750 W PoE PSU	External Power Supply/ Chassis Failed/ Disconnected
Power On	380 W of redundant power	760 W of external power only Internal power supply disabled	760 W of external power only with 2 +1 redundancy Internal power supply disabled	380 W of internal power only
Power Failure	380 W of external power only	760 W of external power only	760 W of external power only with 2 +1 redundancy	No PoE power

Single 750 W PoE PSU Configuration: Redundant PoE Power

A single 750 W PoE PSU provides redundant PoE power capability up to a 380-watt maximum capacity. This is sufficient to supply up to 15.4 watts per port for a 24 -port configuration and up to 7.7 watts per port for a 48-port configuration.

If the internal power supply fails, the external power module will provide power to the switch and PoE devices at the same power levels as the internal power supply without any power interruptions.

If the 750 W PoE PSU fails or is removed, the internal power supply of the switch continues to provide PoE power without any power interruptions.

Dual 750 W PoE PSUs Configuration: Full Power

Two 750 W PoE PSUs provide full power at 760 watts; this power level allows 15.4 watts of PoE power to all 48 ports. In this full-power configuration, the internal power supply is disabled, and therefore redundant power is not available.

Triple 750 W PoE PSUs Configuration: Full Redundant Power

Three 750 W PoE PSUs provide the full 760 watts of power for 15.4 watts of PoE power to all 48 ports. In addition, this configuration provides $2: 1$ redundancy. If one of the 750 W PoE PSU fails, the third power module continues to provide uninterrupted full PoE power. The internal power supply of the switch is disabled in this configuration.

For information on installing the EPS-C2, see Installing an EPS-C2 Power Supply on page 333.
Each EPS-C2 power supply is shipped with a special redundant power supply cord.

Figure 162: EPS-C2 2x7 Pin Redundant Power Cable

EPS-LD External Power Supply Unit

You can use the Extreme Networks EPS-LD External Power Supply Unit (Model 45019) as a redundant power supply with the following Extreme Networks switches:

- Summit X450a-24t switch
- Summit X450e-24p switch

When attached to the Summit X450e-24p switch, the EPS-LD provides 465 W total power with 375 W dedicated for PoE applications.

The front of the EPS-LD has a green LED to indicate operating status as shown in the following table:

Power LED	Meaning
Green, solid	The external power supply is operating normally.
Off	The external power supply is not connected.

Note

An AC power input cord is not provided; you can order an appropriate cord from Extreme Networks or from your local supplier. The power cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Each EPS-160 power supply is shipped with a special redundant power supply cord.

Figure 163: EPS-LD Redundant Power Cord Connector

X450 and X250 PoE Redundant Power Configurations

The PoE capability of the Summit X450e-48p or $\times 250 \mathrm{e}-48 \mathrm{p}$ varies depending on the number of external power modules in use.

The following table summarizes the PoE power behavior for the Summit X450e-48p or X250e-48p switch based on the number of power modules in use.

Table 71: PoE Power Behavior

Internal Power Supply Status	EPS-600LS (1x)	EPS-600LS (2x)	EPS-600LS (3x)	External Power Supply/ Chassis Failed/ Disconnected
Internal Power Supply: Power On	370 W of redundant power	740 W of external power only Internal power supply disabled	740 W of external power only with 2 + 1 redundancy Internal power supply disabled	370 W of internal power only
Internal Power Supply: Power Failure	370 W of external power only	740 W of external power only	740 W of external power only with 2 + 1 redundancy	No PoE power

Single 600-LS Module Configuration: Redundant PoE Power

A single EPS-600LS power module provides redundant PoE power capability with the same 370-watt capacity as the internal power supply.

The internal Summit $\mathrm{X} 450 \mathrm{e}-48$ p or $\mathrm{X} 250 \mathrm{e}-48 \mathrm{p}$ power supply is capable of 370 W of PoE power: 15.4 W supplied to each port for a 24 -port configuration and 7.7 W supplied to each port for a 48-port configuration.

- If the internal power supply fails, the external power module will provide power to PoE devices at the same power levels as the internal power supply without any power interruptions.
- If the EPS-600LS power module fails or is removed, the internal power supply continues to provide PoE power without any power interruptions.

Dual 600-LS Module Configuration: Full Power

Two EPS-600LS power modules provide full power at 740 W ; this power level allows 15.4 W of PoE power to all 48 ports.

In this full-power configuration, the internal power supply is disabled, and therefore redundant power is not available.

Triple 600-LS Module Configuration: Full Redundant Power
Three EPS-600LS power modules provide the full 740 W of power for 15.4 W of PoE power to all 48 ports.

In addition, this configuration provides 2:1 redundancy. If one of the EPS-600LS power modules fails, the third power module continues to provide uninterrupted full PoE power. The internal power supply is disabled in this configuration.

Internal-to-External Power Supply Transfer

This section describes the conditions that would cause the Summit X450e-48p or $\times 250 \mathrm{e}-48 \mathrm{p}$ switch to draw power from the external power unit.

Internal Power Supply Failure with Single EPS-600LS Module

When an EPS-C with a single EPS-600LS is connected to the Summit X450e-48p or $\times 250 \mathrm{e}-48$ p switch and the internal power supply fails, power is drawn from the EPS-600LS without power interruption to the PoE-connected devices.

Two or Three EPS-600LS Modules

When the Summit X450e-48p or $\mathrm{X} 250 \mathrm{e}-48$ p switch detects that an EPS-C is connected and providing stable power from two or three EPS-600LS power modules, the PoE power budget is automatically recalculated to enable 740 W of PoE power. The internal power supply is disabled to prevent damage from excessive current demands beyond the capabilities of the internal power supply.

External-to-Internal Power Supply Transfer

This section describes what happens if power from an external power module either fails or is disconnected.

Active Internal Power Supply with Single 600-LS Module Failure

When an EPS-C with a single EPS-600LS module is connected to the Summit X450e-48p or X250e-48p switch and the EPS-600LS fails or is disconnected, power is drawn from the internal power supply without power interruption to the PoE-connected devices.

Inactive Internal Power Supply with a Dual EPS-600LS Configuration and Module Failure

In an EPS-C2 chassis with two EPS-600-LS power modules, it is possible for one external power module to fail while the second power module continues to function. If one EPS-600LS fails, the PoE power budget is automatically reduced to 370 W for the Summit X450e-48p or X250e-48p switch. PoE port power management occurs as described in the Power over Ethernet section of the ExtremeXOS 16.2 User Guide. With only a single operating power module, the remaining EPS-600LS behaves as a redundant power module. The internal power supply is returned to an active state to provide redundant capability.

If both external power modules fail or are disconnected, PoE power is interrupted while transferring PoE power back to the internal power supply. The internal power supply is then limited to 370 W of PoE power. The PoE power budget is automatically adjusted accordingly. Power management will occur as described in the Power over Ethernet section of the ExtremeXOS 16.2 User Guide.

Disconnect the EPS-C/EPS-600LS

To manually disconnect an EPS-C or to remove the EPS-600LS modules, the recommended practice is to disconnect the EPS-600LS modules one at a time, pausing two seconds after each EPS-600LS disconnect.

This enables a graceful power transition from the external power supplies to the internal power supply.
Example: Two active EPS-600LS modules in an EPS-C
1 Unplug one EPS-600LS unit from its power source.
PoE power is automatically reduced to 370 watts and the internal switch power supply is enabled, providing redundant 370 watt PoE power.
2 Wait at least two seconds before disconnecting the remaining EPS-600LS unit.
3 Unplug the second EPS-600LS unit from its power source.
The internal power supply is already enabled and provides uninterrupted 370 watts of PoE power.
Note
After an EPS-600LS unit is disconnected from its power source, it may be removed from
the EPS-C. See Removing an EPS-600LS Power Module on page 377 for disconnection
and removal instructions.

4 Disconnect the EPS-C from the switch.

STK-RPS-150PS Redundant Power Supply

The STK-RPS-150PS is a hot-swappable 150 watt DC power redundant power supply for use with Extreme Networks stackable or standalone fixed switch models that do not support PoE. The STK-RPS-150PS can be used as a standalone unit, or it can be installed into a two or eight slot shelf and then mounted in a standard 19-inch rack.

The STK-RPS-150PS system is compatible with the following switch models:

- Summit X450-G2-24t-GE4 switch
- Summit X450-G2-24t-10GE4 switch
- Summit X450-G2-48t-GE4 switch
- Summit X450-G2-48t-10GE4 switch

Table 72: STK-RPS-150PS LED Status Definitions

Power LED	Meaning	Recommended Action
Green, solid	AC input to power supply is within specifications	None
Off	AC input power to power supply is out of specification.	1 Check AC power cord connection to the power supply. 2 Check AC power at the power outlet. 3 Swap power cord for a known good one. 4 If the problem persists, contact Extreme Networks for support.

For technical specifications, see STK-RPS-150PS and RPS Shelves Technical Specifications on page 523.

RPS-500p Redundant Power Supply

The RPS-500p (model 10923) is a 500 watt DC power redundant power supply for use with Extreme 802.3at PoE-compliant stackable or standalone switches. The RPS-500p is a standalone unit that can be rack mounted in a standard 19-inch rack.

The power supply provides power backup to an Extreme stackable or standalone fixed switch. If for some reason the switch loses power from its internal power supply, the RPS-500p can provide up to 500 watts maximum operating power to support switch operation and the 55 VDC necessary to support 55 VDC /data connections to PDs (powered devices). The RPS-500p has one 2×7 power connector.

The power supply ships with the following:

- AC power cord
- RPS cable (1 meter long)
- Four rubber feet (for flat surface installation)
- Two rack mount brackets
- Eight flathead screws (M3x6mm)

The RPS-500p is compatible with the following Extreme Networks switches:

- Summit X440 switches (all models that are compatible with external power supplies)
- Summit X450-G2 switches (non-PoE models)

The RPS-500p is compatible with both PoE and non-PoE switches.

Table 73: RPS-500p LED Status Definitions

Power LED	Meaning	Recommended Action
Green, solid	AC input to power supply is within specifications	None
Off	AC input power to power supply is out of specification.	1 Check AC power cord connection to the power supply. 2 Check AC power at the power outlet. 3 Swap power cord for a known good one. 4 If the problem persists, contact Extreme Networks for support.

For technical specifications, see RPS-500p Redundant Power Supply Technical Specifications on page 542.

Replaceable Internal Power Supplies for Summit Switches

Several Summit switch models have two bays for installing one or two replaceable AC or DC power supplies.

In a redundant power configuration, both power supplies are fully fault-tolerant and load-sharing. You can remove one power supply without interrupting switch operation.

Specific switch series and models are compatible with different power supply models, as shown in the following table:

Table 74: Replaceable Internal Power Supply Compatibility

Hardware Model	AC Power Supplies: Part No.	DC Power Supplies: Part No.
X450-G2 switch (PoE models)	715 W AC-FB: 10951 1100 W AC-FB: 10941	
X460 switch (non-PoE models)	$\begin{aligned} & 300 \text { W AC-FB: 10930A } \\ & 300 \text { W AC-BF: } 10943 \end{aligned}$	300 W DC-FB: 10933 300 W DC-BF: 10944
X460 switch (PoE models)	750 W AC: 10931	
X460-G2 switch (non-PoE models)	$\begin{aligned} & 300 \text { W AC-FB: } 10930 \mathrm{~A} \\ & 300 \text { W AC-BF: } 10943 \end{aligned}$	$\begin{aligned} & 300 \text { W DC-FB: } 10933 \\ & 300 \text { W DC-BF: } 10944 \end{aligned}$
X460-G2 switch (PoE models)	350 W AC-FB: 10953 350 W AC-BF: 10954 715 W AC-FB: 10951 715 W AC-BF: 10952 1100 W AC-FB: 10941 1100 W AC-BF: 10942	
X480 switch	450 W AC: 10917	450 W DC: 10918
X650 switch*	850 W AC: 10914	850 W DC: 10915
X670-48x switch (FB) X670V-48x switch (FB)	$\begin{aligned} & 450 \text { W AC: } 10917 \\ & 550 \text { W AC-FB: } 10925 \end{aligned}$	$\begin{aligned} & 450 \text { W DC: } 10918 \\ & 550 \text { W DC-FB: } 10926 \end{aligned}$
X670-48x switch (BF) X670V-48x switch (BF)	550 W AC-BF: 10927	550 W DC-BF: 10928
X670-G2 switch	550 W AC-FB: 10925 550 W AC-BF: 10927	550 W DC-FB: 10926 550 W DC-BF: 10928
X770-32q switch (FB)	550 W AC-FB: 10925	550 W DC-FB: 10926
X770-32q switch (BF)	550 W AC-BF: 10927	550 W DC-BF: 10928

Note

AC power input cords are not provided with a Summit AC power supply. You can order an appropriate cord from Extreme Networks or from your local supplier. The power cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Summit 300 W AC and DC Power Supplies

The following 300 W power supplies are available:

- Summit 300 W AC power supply: front-to-back airflow (Model 10930A)
- Summit 300 W AC power supply: back-to-front airflow (Model 10943)

[^2]- Summit 300 W DC power supply: front-to-back airflow (Model 10933)
- Summit 300 W DC power supply: back-to-front airflow (Model 10944)

These power supplies are compatible with the following switch models:

- Summit X460-G2 switches (non-PoE models)

The Summit 300 W power supplies (AC and DC) have the status LEDs listed in the following table.

Table 75: Summit 300 W Power Supply LED Status Indications

LED Label and Color		Meaning	
In OK Green	Out DC OK Green/red bicolor		
Off	Off	No input power	
Off	Steady red	No input power; receiving standby output from system.	
On	Off	Input good; 12 V output is disabled. Standby output is ON.	
On	Steady red	Input good; fault in 12 V output.	
On	Flashing green and red	Input good, 12 V output good. Power supply alert: power supply is likely to fail because of a developing fault, such as abnormal thermal conditions or poor fan performance.	
On	Steady green	Input good; DC outputs good.	

Summit 450 W AC and DC Power Supplies

The following Summit 450 W power supplies are available:

- Summit 450 W AC power supply (Model 10917)
- Summit 450 W DC power supply (Model 10918)

The Summit 450 W power supplies (AC and DC) have the status LEDs listed in the following table.

Table 76: Summit 450 W Power Supply LED Status Indications

Position	Color and State	
Top	Steady Green	+3.3 VSB ok; 12 V ok; power supply is working properly.
Middle	Steady Amber	Fault condition (for example, 3.3VSB OCP/UCP, 12V OCP/UCP, or fan failure).
Bottom	Steady Green	Power supply is connected to power. If the cord is connected and this LED is off, the power supply is defective.

Summit 550 W AC and DC Power Supplies

Summit 550 W power supplies are available in the following models:

- 550 W AC PSU-FB (Part number 10925) - AC power supply with front-to-back ventilation airflow
- 550 W DC PSU-FB (Part number 10926)—DC power supply with front-to-back ventilation airflow
- 550 W AC PSU-BF (Part number 10927)-AC power supply with back-to-front ventilation airflow
- 550 W DC PSU-BF (Part number 10928)—DC power supply with back-to-front ventilation airflow

These power supplies are compatible with the following switch models:

- Summit X670-48x switch
- Summit X670V-48x switch
- Summit X670-G2 switches (all models)
- Summit X770-32a switch

The power supply must have the same airflow direction (front-to-back or back-to-front) as the switch with which it is being used. In a redundant power configuration, the airflow direction must be the same for both power supplies, and it must match the airflow direction of the fans in the switch.

The Summit 550 W power supplies (AC and DC) have the status LEDs listed in Table 77.

Table 77: Summit 550 W Power Supply LED Status Indications

Position	Steady Green	+3.3 VSB ok; 12 V ok; power supply is working properly.
Top Power Good	Steady Amber	Fault condition (for example, 3.3VSB OCP/UCP, 12V OCP/UCP, or fan failure).
Middle Power Supply Fail	Steady Green	Power supply is connected to power. If the cord is connected and this LED is off, the power supply is defective.
Bottom AC OK		

Summit 715 W AC Power Supplies

Summit 715 W AC power supplies are available in the following models:

- 715 W AC PSU-FB (Model 10951)—AC power supply with front-to-back ventilation airflow
- 715 W AC PSU-BF (Model 10952)-AC power supply with back-to-front ventilation airflow

Both power supplies are compatible with Summit X460-G2 PoE switch models that have the same airflow direction as the power supply.

The Summit 715 W AC PSU-FB power supply (Model 10951) is compatible with the Summit X450-G2 PoE switch models.

The Summit 715 W AC power supplies have a keyed power inlet (C16) that requires a notched (C15) power cord.

The Summit 715 W AC power supplies have the status LEDs listed in Table 78.

Table 78: Summit 715 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green/RED)	
Off	Off	No AC input power connection or low AC voltage.
On	Off	AC input good, 54V output disabled.
On	(Red) On	AC input good, output (54V) fault.
On	(Green) On	AC input good, DC outputs in spec.

Summit 750 W AC Power Supply

The Summit 750 W AC power supply (Model 10931) is available for PoE models of the Summit X460 series switches.

The Summit 750 W AC power supply is also used in the EPS-C2 external power system (see EPS-C2 Redundant Power System on page 152). Each installed Summit 750 W AC power supply can provide up to 380 watts of PoE power budget.

The Summit 750 W AC power supply has the status LEDs listed in the following table.

Table 79: Summit 750 W AC Power Supply LED Status Indications

Label and Color	State	Meaning
AC OK Green	Off	No AC input
	On	AC input is good.
$\begin{aligned} & \text { DC OK } \\ & \text { Green } \end{aligned}$	Off	Both DC outputs (55 V and 12 V) are bad or not enabled.
	Blinking	One output is enabled and good; the second output is bad or not enabled.
	On	Both the 55 V and 12 V outputs are enabled and good.
$\begin{aligned} & \text { ALM } \\ & \text { Red } \end{aligned}$	Off	No fault condition exists.
	Blinking	Power supply alert: power supply is likely to fail because of a developing fault, such as abnormal thermal conditions or poor fan performance. or One output (55 V or 12 V) is bad.
	On	Both outputs (55 V and 12 V) are bad. Power supply is receiving 3.3 VSB from the system. (AC OK and DC OK are off.) Thermal shutdown, fan failure, or any fault condition when both 55 V and 12 V are turned OFF.

Summit 850 W AC and DC Power Supplies

The following 850 W power supplies are available:

- Summit 850 W AC power supply (Model 10914)
- Summit 850 W DC power supply (Model 10915)

These power supplies are compatible with the Summit X650 series switches.

Note
We do not recommended using the Summit 850 W DC power supply in combination with a Summit 850 W AC power supply in the same Summit X 650 series switch.

The Summit 850 W AC and DC power supplies have the status LED described in the following table.

Table 80: Summit 850 W Power Supply LED Status Indications

Color and State	Meaning
Blinking green	AC in; no output
Steady green	Normal operation
Blinking red	Output error
Steady red	Critical error

Summit 1100 W AC Power Supplies

Summit 1100 W AC power supplies are available in the following models:

- 1100 W AC PSU-FB (Model 10941)-power supply with front-to-back ventilation airflow
- 1100 W AC PSU-BF (Model 10942) - power supply with back-to-front ventilation airflow

Both power supplies are compatible with Summit X460-G2 PoE switch models that have the same airflow direction as the power supply.

The Summit 1100 W AC PSU-FB power supply (Model 10941) is compatible with the Summit X450-G2 PoE switch models.

The Summit 1100 W AC power supplies have a keyed power inlet (C16) that requires a notched (C15) power cord.

The Summit 1100 W AC power supplies have the status LEDs listed in Table 81.

Table 81: Summit 1100 W AC Power Supply LED Status Indications

IN_OK (Green)	OUT_OK (Green/RED)	
Off	Off	No AC input power connection or low AC voltage.
On	Off	AC input good, 54V output disabled.
On	(Red) On	AC input good, output (54V) fault.
On	(Green) On	AC input good, DC outputs in spec.

3 option Cards and Versatile Interface Modules

```
Summit XGM-2xn Option Card
Summit XGM2-2xn Option Card
Summit XGM2-2xf Option Card
Summit XGM2-2sf Option Card
Summit XGM2-2bt Option Card
Versatile Interface Modules for the Summit X480 Series Switches
Versatile Interface Modules for the Summit X650 Series Switches
Optional Ports for the Summit X460 Series Switches
Summit X460 Series Stacking Modules
Optional Ports for the X460-G2 Series Switches
VIM4-40G4X Versatile Interface Module for the Summit X670 Switch
```

Port option cards, versatile interface modules (VIMs), or stacking modules are installed in dedicated slots at the back of the switch to provide optional I/O ports or stacking ports. If no card or module is installed, the option slot is covered by a blank panel.

These optional items add 10-Gbps copper or fiber I/O ports or high-performance stacking ports to the back panel of compatible switches.

The following table lists the types of port option cards, VIMs, and stacking modules and their compatible Summit switch series.

Table 82: Summit Card, VIM, and Module Compatibility

Card or Module Type	Name	No. of Ports	Type of Ports	Compatible Switch Series
10-Gbps I/O Port XGM series	XGM-2xn	2	XENPAK optical I/O ports	Summit X450
	XGM2-2xn	2	XENPAK optical I/O ports	Summit X450a, $\times 450 \mathrm{e}$
	XGM2-2xf	2	XFP optical I/O ports	Summit X350, X450a, X450e
	XGM2-2sf	2	SFP+ optical I/O ports	Summit X350, X450a, X450e
	XGM2-2bt	2	10GBASE-T copper I/O ports	Summit X350, X450a, X450e
	XGM3-2sf	2	SFP+ optical I/O ports	Summit X460 (slot A)
	XGM3S-2sf	2	SFP+ optical I/O ports with SyncE	Summit X460 (slot A)
	XGM3S-2xf	2	XFP optical I/O ports with SyncE	Summit X460 (slot A)
	XGM3SB-4sf	4	SFP+ optical I/O ports with SyncE	Summit X460 (slot B)
VIM1	VIM1-SummitStack	2	20-Gbps stacking ports	Summit X650
		4	1-Gbps SFP I/O ports	Summit X650
	VIM1-10G8X	2	20-Gbps stacking ports	Summit X650
		8	10-Gbps SFP+ I/O ports	Summit X650
	VIM1-SummitStack512	4	128-Gbps stacking ports	Summit X650
	VIM1-SummitStack256	2	128-Gbps stacking ports	Summit X650
VIM2	VIM2-SummitStack	2	20-Gbps stacking ports	Summit X480
	VIM2-10G4X	4	10-Gbps XFP I/O ports	Summit X480
	VIM2-SummitStack128	2	64-Gbps stacking ports	Summit $\times 480$
	VIM2-SummitStack-V80	2	40-Gbps QSFP+ stacking ports	Summit X480
Stacking Module	SummitStack	2	20-Gbps stacking ports	Summit X460 (slot B)
	SummitStack-V80	2	40-Gbps QSFP+ stacking ports	Summit X460 (slot B)
VIM3	VIM3-40G4X	4	40-Gbps QSFP+ stacking ports	Summit X480, X650
VIM4	VIM4-40G4X	4	40-Gbps QSFP+ stacking ports	Summit X670V-48x switch

Summit XGM-2xn Option Card

The Summit XGM-2xn option card allows you to add one or two 10-gigabit XENPAK modules to the following switches:

- Summit X450-24x switch
- Summit X450-24t switch

For current information about compatible XENPAK modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For information about XENPAK modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

Note

Standards-based CX-4 XENPAKs are also recognized by ExtremeXOS. Contact your CX-4 module vendor to obtain them.

Mixing ZR XENPAKs with Other Types

The following table lists the supported combinations of XENPAK types using ZR XENPAKs in a Summit X450 series switch.

You can either install one ZR XENPAK and leave one slot empty or install one ZR XENPAK and one SR XENPAK. The Summit X450 series switch does not support any other XENPAK combinations when a ZR XENPAK module is installed. You must put the specified modules in the specified slots, as shown in the following table for the switch to discover the ZR XENPAK correctly.

Left Slot	Right Slot
ZR XENPAK	Empty
ZR XENPAK	SR XENPAK

Summit XGM2-2xn Option Card

The Summit XGM2-2xn option card allows you to add one or two 10-gigabit XENPAK modules to the following switches:

- Summit X350 series switch, running ExtremeXOS 12.1.2 (or later). Summit X350 series switches do not support the LW XENPAK module in the XGM2-2xn card.
- Summit X450a-24t switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450a-24tDC switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450a-24x switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450a-24xDC switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450a-48t switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450e-24p switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450e-48p switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450e-24t switch, running ExtremeXOS 12.5.1 (or later)
- Summit X450e-48t switch, running ExtremeXOS 12.5.1 (or later)

Figure 164: Summit XGM2-2xn Option Card
In Summit X450a and X450e series switches, the ports on the XGM2-2xn option card can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

For current information about compatible XENPAK modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For information about XENPAK modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

Note

Standards-based CX-4 XENPAKs are also recognized by ExtremeXOS. Contact your CX-4 module vendor to obtain them.

Summit XGM2-2xf Option Card

The Summit XGM2-2xf option card allows you to add one or two 10-gigabit XFP modules to the following switches:

- Summit X350 series switch, running ExtremeXOS 12.1.2 (or later)
- Summit X450a-24t switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450a-24tDC switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450a-24x switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450a-24xDC switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450a-48t switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450e-24p switch, running ExtremeXOS 11.5.0 (or later)
- Summit X450e-48p switch, running ExtremeXOS 11.6.1 (or later)
- Summit X450e-24t switch, running ExtremeXOS 12.5.1 (or later)
- Summit X450e-48t switch, running ExtremeXOS 12.5.1 (or later)

The following figure shows the Summit XGM2-2xf option card.

Figure 165: Summit XGM2-2xf Option Card
The ports on the XGM2-2xf option card can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

For current information about compatible XENPAK modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For information about XENPAK modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

Note

Standards-based CX-4 XENPAKs are also recognized by ExtremeXOS. Contact your CX-4 module vendor to obtain them.

Summit XGM2-2sf Option Card

- Summit X350 series switch, running ExtremeXOS 12.2.1 or later
- Summit X450a series switch, running ExtremeXOS 12.2.1 or later
- Summit X450e-24p or X450e-48p switch, running ExtremeXOS 12.2.1 or later
- Summit X450e-24t or X450e-48t switch, running ExtremeXOS 12.5.1 or later

In Summit X450a and X450e series switches, the ports on the XGM2-2sf option card can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

For current information about compatible XENPAK modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For information about XENPAK modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

Note
Standards-based CX-4 XENPAKs are also recognized by ExtremeXOS. Contact your CX-4 module vendor to obtain them.

Summit XGM2-2bt Option Card

The XGM2-2bt option card allows you to add two fixed 10GBASE-T ports to the following switches:

- Summit X350 series switch, running ExtremeXOS 12.2.1 or later
- Summit X450a series switch, running ExtremeXOS 12.2.1 or later
- Summit X450e-24p or X450e-48p switch, running ExtremeXOS 12.2.1 or later
- Summit X450e-24t or X450e-48t switch, running ExtremeXOS 12.5.1 (or later)

In Summit X450a and X450e series switches, the ports on the XGM2-2bt option card can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

The 10GBASE-T standard (IEEE 802.3an) allows the use of standard CAT5E, CAT6, or CAT6A cable for connection to the XGM2-2bt ports (see the following table).

Table 83: Standard Cable Distances

Cable Type	Maximum Distance
CAT5E	55 meters
CAT6	75 meters
CAT6A	100 meters

Versatile Interface Modules for the Summit X480 Series Switches

You can install a VIM2 or VIM3 versatile interface module (VIM) in a dedicated slot in the rear of the Summit X480 series switch to provide high speed stacking ports or 10-Gbps Ethernet ports.

VIM2-10G4X Versatile Interface Module

The VIM2-10G4X versatile interface module provides four 10-Gbps ports using XFP optical modules.
For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

Figure 166: VIM2-10G4X Versatile Interface Module
The XFP ports are labeled $S 1, S 2, S 3$, and $S 4$. ExtremeXOS software assigns port numbers to the XFP ports based on the switch model in which the VIM2-10G4X module is installed (see the following table).

Table 84: Port Numbers for XFP Ports on the VIM2-10G4X Module

Port Label	Summit X480-48t or Summit X480-48xPort Number	Summit X480-24tPort Number
S1	49	27
S2	50	28
S3	51	29
S4	51	30

Ports S3 and S4 can be used as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

VIM2-SummitStack Versatile Interface Module

The VIM2-SummitStack module provides two high-performance stacking ports that allow you to combine multiple units into a single SummitStack management entity.

For more information about configuring and operating a SummitStack configuration, refer to the ExtremeXOS 22.3 User Guide and the ExtremeXOS 22.3 Command Reference Guide.

Figure 167: VIM2-SummitStack Versatile Interface Module

VIM2-SummitStack128 Versatile Interface Module

The VIM2-SummitStack128 versatile interface module provides two 64-Gbps SummitStack stacking ports.

To connect these ports, you must use stacking cables with compatible connectors, available from Extreme Networks.

Figure 168: VIM2-SummitStack128 Versatile Interface Module

VIM2-SummitStack-V80 Versatile Interface Module

The VIM2-SummitStack-V80 versatile interface module provides two unpopulated cages for QSFP+ optical modules or QSFP+ compatible active or passive cables.

These ports support 20-Gbps bidirectional stacking connections.

Figure 169: VIM2-SummitStack-V80 Module

VIM3-40G4X Versatile Interface Module

The VIM3-40G4X versatile interface module provides four unpopulated cages for QSFP+ optical modules or QSFP+ compatible direct-attach active or passive cables.

Ports 25 and 26 can be enabled as alternate stacking ports for the Summit $\times 480$ series switch.
Each physical port can be configured to operate as a single 40-Gbps port or as four 10-Gbps ports. When the port operates in 40-Gbps mode, you can connect the port using either a QSFP+ direct-attach cable or an installed QSFP+ module and compatible fiber optic cable. When the port is configured to operate in $10-$ Gbps mode, you must connect it using a special 1-to-4 breakout fiber optic cable.

The VIM3-40G4X module requires ExtremeXOS 15.1.2 software (or later) installed on the Summit X480 series switch.

Figure 170: VIM3-40G4X Versatile Interface Module

1 = QSFP+ port	2 = Port LEDs

Versatile Interface Modules for the Summit X650 Series Switches

The rear panel of the Summit X650 series switch has a replaceable VIM1 or VIM3 versatile interface module.

These modules provide dedicated high-speed stacking ports or Ethernet ports. For more information about using the stacking ports, see Building Stacks on page 202.

The following VIMs are available for the Summit X650 series switches:

- VIM1-10G8X Versatile Interface Module on page 174
- VIM1-SummitStack Versatile Interface Module on page 174
- VIM1-SummitStack512 Versatile Interface Module on page 176
- VIM1-SummitStack256 Versatile Interface Module on page 175
- VIM3-40G4X Versatile Interface Module on page 176

VIM1-10G8X Versatile Interface Module

The VIM1-10G8X versatile interface module provides eight cages for installed SFP or SFP+ optical modules.

In addition, the VIM1-10G8X module is compatible with the SFP+ direct-attach passive copper cable. For information about the supported optical modules, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

The VIM1-10G8X module also provides two high-performance stacking ports that allow you to combine multiple units into a single SummitStack management entity. The stacking ports on the VIM1-10G8X module are not shared with the front panel ports.

Ports 31 and 32 on the VIM1-10G8X module can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

Figure 171: VIM1-10G8X Versatile Interface Module

VIM1-SummitStack Versatile Interface Module

The VIM1-SummitStack versatile interface module provides four cages for installed 1000-BASE SFP optical modules.

These ports (numbered 25 through 28) function the same as the front-panel ports. For a complete list of supported SFPs, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

The VIM1-SummitStack module also provides two high-performance stacking ports that allow you to combine multiple units into a single SummitStack management entity. The VIM1-SummitStack module is the default VIM1 module shipped with the base Summit X650 platform. Ports 23 and 24 of the front panel are shared with the two rear-panel stacking ports on the VIM1-SummitStack module.

By default, stacking is not enabled on the switch, and all 24 front-panel ports are available. When stacking is enabled, the switch provides access to 22 10GBASE ports and 2 stacking ports. For more information about configuring and operating a SummitStack configuration, refer to Building Stacks on page 202.

Figure 172: VIM1-SummitStack Versatile Interface Module

VIM1-SummitStack256 Versatile Interface Module

The VIM1-SummitStack256 versatile interface module provides two 128-Gbps SummitStack stacking ports.

To connect these ports, you must use stacking cables with compatible connectors, available from Extreme Networks.

The VIM1-SummitStack256 module requires ExtremeXOS 12.4.1 software (or later) installed on the Summit X650 series switch.

Figure 173: VIM1-SummitStack256 Versatile Interface Module

VIM1-SummitStack512 Versatile Interface Module

The VIM1-SummitStack512 versatile interface module provides four 128-Gbps stacking ports that are used to cross-connect two Summit X650 series switches.

Each switch must have an installed VIM1-SummitStack512 module. To connect these ports, you must use stacking cables with compatible connectors, available from Extreme Networks.

The VIM1-SummitStack512 module requires ExtremeXOS 12.3.3 software (or later) installed on the Summit X650 series switch.

Figure 174: VIM1-SummitStack512 Versatile Interface Module

VIM3-4OG4X Versatile Interface Module

The VIM3-40G4X versatile interface module provides four unpopulated cages for QSFP+ optical modules or QSFP+ compatible direct-attach active or passive cables.

Ports S3 and S4 can be enabled as native stacking ports for the Summit X650 series switch.
Each physical port can be configured to operate as a single 40-Gbps port or as four 10-Gbps ports. When the port operates in 40-Gbps mode, you can connect the port using either a QSFP+ direct-attach cable or an installed QSFP+ module and compatible fiber optic cable. When the port is configured to operate in 10-Gbps mode, you must connect it using a special 1-to-4 breakout fiber optic cable.

The VIM3-40G4X module requires ExtremeXOS 12.6 .1 software (or later) installed on the Summit X650 series switch.

Figure 175: VIM3-40G4X Versatile Interface Module

1 = QSFP+ port	2 = Port LEDs

Optional Ports for the Summit X460 Series Switches

The rear panel of all Summit X460 switches provides slots to install the following option cards:

- XGM3-2sf port option card
- XGM3S-2sf option card
- XGM3S-2xf option card
- Summit X460 series stacking module
- XGM3SB-4sf option card

Note
Option cards for the Summit X460 series switches are not compatible with the Summit X460G2 series switches.

Caution

Option cards are not hot swappable. You must power down the switch before installing or removing option cards.

XGM3-2sf Port Option Card

The XGM3-2sf option card allows you to add one or two 10-gigabit SFP+ optical ports to slot A on the rear panel of a Summit $X 460$ series switch.

Caution

Option cards are not hot swappable. You must power down the switch before installing or removing option cards.

The XGM3-2sf option card supports SFP+ optical modules and the SFP+ direct-attach passive copper cable.

The ports on the XGM3-2sf option card can be configured as alternate stacking ports in a SummitStack configuration that uses the SummitStack-V feature. For more information about stacking Summit switches, see Building Stacks on page 202.

Figure 176: XGM3-2sf Option Card

For current information about compatible SFP+ modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For more information about SFP+ modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

XGM3S-2sf Port Option Card

The XGM3S-2sf option card allows you to add one or two 10-gigabit SFP+ optical ports to slot A on the rear panel of a Summit $X 460$ series switch.

Caution

Option cards are not hot swappable. You must power down the switch before installing or removing option cards.

These ports support synchronous Ethernet (SyncE). The XGM3S-2sf option card supports either SFP+ optical modules or the SFP+ direct-attach passive copper cable.

Figure 177: XGM3S-2sf Option Card

1 = SFP+ Ports	$2=$ LEDs

XGM3S-2xf Port Option Card

The XGM3S-2xf option card allows you to add one or two 10-gigabit XFP optical ports to Slot A on the rear panel of the Summit $X 460$ series switch.

Caution
Option cards are not hot swappable. You must power down the switch before installing or removing option cards.

These ports support synchronous Ethernet (SyncE).

Figure 178: XGM3S-2xf Option Card

$1=$ XFP ports	$2=\mathrm{LEDs}$

XGM3SB-4sf Port Option Card

The XGM3SB-4sf option card allows you to add up to four 10-gigabit SFP+ optical ports to Slot B on the rear panel of the Summit $\times 460$ series switch.

Caution

Option cards are not hot swappable. You must power down the switch before installing or removing option cards.

These ports support synchronous Ethernet (SyncE). The XGM3SB-4sf option card supports either SFP+ optical modules or the SFP+ direct-attach passive copper cable.

Figure 179: XGM3SB-4sf Option Card

$1=$ SFP + Ports	$2=$ LEDs

Summit X460 Series Stacking Modules

Summit X460 series stacking modules allow you to add two high-performance SummitStack ports to slot B on the rear panel of a Summit X460 series switch.

Caution
Stacking modules are not hot swappable. You must power down the switch before installing any stacking modules.

These ports allow you to combine multiple units into a single SummitStack management entity, using stacking cables that are available from Extreme Networks.

Two stacking modules are available for the Summit X460 series switches:

SummitStack stacking	Provides two integrated 20-Gbps bidirectional stacking ports for stacking connections using Extreme Networks SummitStack cables.
SummitStack-V80	Provides two unpopulated cages for QSFP+ optical modules or QSFP+ compatible active or passive cables. These ports support 20-Gbps bidirectional stacking
stacking module	connections. See Figure 180.

Figure 180: Summit X460 Series Stacking Modules

Optional Ports for the X460-G2 Series Switches

The rear panel of every X460-G2 switch provides slots to install the following:

- VIM-2a Ethernet Module with 2×40 g ports
- VIM-2ss SummitStack Module with stacking ports
- VIM-2t Ethernet Module with 2×10 GBASE-T ports
- VIM-2x Ethernet Module with 2×10 GSFP+ ports
- TM-CLK Clock Module to support SyncE and 1588

Note
Optional VIM and clock modules for the X460-G2 series switches are not compatible with
Summit X460 series switches.
Caution The switch must be powered off before you install any interface module options (VIMs or clock modules). The interface module options are not hot swappable.

VIM-2q Port Option Card

The VIM-2q Ethernet Module option card allows you to add one or two 40 gigabit QSFP+ optical ports to the VIM (Versatile Interface Module) slot on the rear panel of a Summit X460-G2 series switch. The VIM-2q option card supports QSFP+ optical modules.

The ports on the VIM-2q option card can be configured as high speed stacking ports in a SummitStack configuration with a stack link speed of 40G. For more information about stacking Summit switches, see Building Stacks on page 202.

Note
40G ports on the VIM-2q cannot be partitioned into four 10G ports.

Caution

VIM modules are not hot swappable. You must power down the switch before installing any VIM modules.

Note
Alternate stacking with the VIM-2q is supported with ExtremeXOS version 16.1. However, alternate stacking is not supported with earlier versions of the ExtremeXOS software.

Figure 181: VIM-2q Port Option Card

1 = LEDs	2 = QSFP+ Ports

For current information about compatible QSFP+ modules and the minimum required software, refer to the most recent version of the Extreme Hardware/Software Compatibility and Recommendation Matrices.

For more information about QSFP+ modules, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

VIM-2ss Port Option Card

Summit X460-G2 series stacking modules allow you to add two high-performance SummitStack ports to the VIM (Versatile Interface Module) slot on the rear panel of a Summit X460-G2 series switch. These ports allow you to combine multiple units into a single SummitStack management entity, using stacking cables that are available from Extreme Networks. The VIM-2ss stacking module, shown in Figure 182,
provides two integrated CX4 SummitStack 10-Gbps bidirectional stacking ports for stacking connections using Extreme Networks SummitStack cables.

Caution

VIM modules are not hot swappable. You must power down the switch before installing any VIM modules.

Note

Alternate stacking with the VIM-2ss is supported with ExtremeXOS version 16.1. However, alternate stacking is not supported with earlier versions of the ExtremeXOS software.

Figure 182: VIM-2ss SummitStack Module

1 = LEDs	2 = Stacking Ports

VIM-2t Port Option Card

The VIM-2t Ethernet Module option allows you to add one or two 10-gigabit copper BASE-T ports to the VIM (Versatile Interface Module) slot on the rear panel of a Summit X460-G2 series switch. These ports support 10G BASE-T RJ45 cables. SyncE support is available on the S1 port.

Caution

VIM modules are not hot swappable. You must power down the switch before installing any VIM modules.

Figure 183: VIM-2t Ethernet Module Option

1 = LEDs	$2=10 \mathrm{G}$ BASE-T ports

VIM-2x Ethernet Module Port Option Card

The VIM-2x Ethernet Module option card, shown in Figure 184, allows you to add up to two 10-gigabit SFP+ optical ports to the VIM slot on the rear panel of the Summit X460-G2 series switch. These ports support 1 GbE and 10 GbE SFP and SFP+ transceivers.

Caution
VIM modules are not hot swappable. You must power down the switch before installing any VIM modules.

Note

Alternate stacking with the VIM-2x is supported with ExtremeXOS version 16.1. However, alternate stacking is not supported with earlier versions of the ExtremeXOS software.

Figure 184: VIM-2x Ethernet Module Option

1 = LEDs	$2=$ SFP + Ports

TM-CLK Clock Module

The TM-CLK Clock Module provides an Oven-controlled Crystal Oscillator (OCXO), stable to better than one part per million for use as a reference frequency for SyncE and 1588 v 2 precision time features. The ExtremeXOS configuration selects the input to the clock module from a SyncE master port or a 1588 v 2 grandmaster clock. The TM-CLK module is required for SyncE on the X460-G2. The 1588 v 2 Precision Time feature on the X460-G2 requires the TM-CLK module and the Network Timing Feature Pack, and does not support stacking.

Two mini-BNC outputs deliver the following signals:

- 10 MHz frequency reference
- 1 PPS signal at the top of each second
Caution
The clock module is not hot swappable. You must power down the switch before installing
any VIM modules.

Note
The TM-CLK module has no inputs for timing signals, and it cannot act as a 1588 v 2
grandmaster clock. The module provides no RJ45 Building Integrated Timing System (BITS)
output, and in particular does not provide the serial time of day output.

Note
The X460-G2 TM-CLK clock module does not accept both 10MHz and 1PPS signals at the
same time, so it can take 10 to 20 minutes or more to lock onto a 1588v2 1PPS signal from the
Apollo2 chip in addition to the usual 15 minutes or more for the 1588v2 servo to lock onto the
remote grandmaster clock.

Figure 185: TM-CLK Module Option

```
1= Timing signal mini-BNC outputs
```


VIM4-40G4X Versatile Interface Module for the Summit X670 Switch

The rear panel of the Summit X670 switch provides a slot for an optional VIM4-40G4X versatile interface module.

The VIM4-40G4X module (see Figure 186 on page 185) provides four unpopulated cages for QSFP+ optical modules or QSFP+ compatible active or passive cables.

Each physical port can be configured to operate as a single 40-Gbps port or as four 10-Gbps ports. When the port operates in 40-Gbps mode, you can connect the port using either a QSFP+ direct-attach cable or an installed QSFP+ module and compatible fiber optic cable. When the port is configured to operate in 10-Gbps mode, you must connect it using a special 1-to-4 fan-out cable.

Ports S3 and S4 are used for native V160 stacking for Summit X670V switches. Ports S1, S2, S3, and S4 are used for native V320 stacking. In either stacking mode, the ExtremeXOS operating system enables these ports automatically. The output of the show ports command shows these ports as follows:

- Port S1 displays as port 49.
- Port S2 displays as port 53.
- Port S3 displays as port 57.
- Port S4 displays as port 61.

The VIM4-40G4X module requires ExtremeXOS 12.6.1 software (or later) installed on the X670 switch.

Figure 186: VIM4-40G4X Versatile Interface Module

1 = QSFP+ port	2 = Port LEDs

For more information, see Summit X670 Stacking on page 228.

4
 Site Preparation

Planning Your Site

Operating Environment Requirements
Rack Specifications and Recommendations
Evaluating and Meeting Cable Requirements
Meeting Power Requirements
Following Applicable Industry Standards

By carefully planning your site, you can maximize the performance of your existing network and ensure that it is ready to migrate to future networking technologies.

The information in this chapter is intended for the system administrator, network equipment technician, network manager, or facilities manager responsible for installing and managing the network hardware. The chapter assumes a working knowledge of local area network (LAN) operations, and a familiarity with communications protocols that are used on interconnected LANs.

Only qualified service personnel should install, maintain, or remove a switch, chassis, or its components. Qualified service personnel have had appropriate technical training and experience that is necessary to be aware of the hazards to which they are exposed when performing a task and of measures to minimize the danger to themselves or other people.

Note

Before installing or removing any components of the system, and before carrying out any maintenance procedures, read the safety information in Technical Specifications on page 424.

Planning Your Site

To install your equipment successfully, you should plan the site carefully. The site planning process has three major parts:

1 Meeting site requirements.
The physical installation site must meet the following requirements for a safe and successful installation:

- Building and electrical code requirements
- Environmental, safety, and thermal requirements for the equipment you plan to install
- Equipment rack requirements

2 Evaluating and meeting cable requirements.
After examining your physical site and verifying that all environment requirements are met, evaluate and compare your existing cable plant with the requirements of the Extreme Networks equipment to determine if you need to install new cables.
3 Meeting power requirements.

To run your equipment safely, you must meet the specific power requirements for each switch and external power supply unit installed in the system.

For power specifications of the switches, see the specific switch listings in Technical Specifications on page 424.

For power specifications of the external power supplies, see Summit External Power Supplies Technical Specifications on page 537.

Operating Environment Requirements

Verify that your site meets all environmental and safety requirements.
Virtually all areas of the United States are regulated by building codes and standards. During the early planning stages of installing or modifying your network, it is important that you develop a thorough understanding of the regulations that pertain to your location and industry.

Meeting Building and Electrical Codes

Building and electrical codes vary depending on your location. Comply with all code specifications when planning your site and installing cable. This section lists resources for obtaining additional information.

For information about major building codes, consult the following organization:
International Code Council (ICC)
5203 Leesburg Pike
Falls Church, VA 22041 USA
www.iccsafe.org
www.sbcci.org
The organizations listed in Table 85 are authorities on electrical codes.

Table 85: Authorities on Electrical Codes

Organization	Address	Web Site URL
National Electrical Code (NEC) Classification (USA only)	NFPA	www.nfpa.org
Recognized authority on safe electrical wiring. Federal, state,	1 Batterymarch Park	
and local governments use NEC standards to establish their		
own laws, ordinances, and codes on wiring specifications. The	O2169	
NEC classification is published by the National Fire Protection	USA	
Association (NFPA).	UL	
Underwriters' Laboratory (UL) (USA only) Independent research and testing laboratory. UL evaluates the performance and capability of electrical wiring and equipment	Northbrook, Illinois to determine whether they meet certain safety standards when properly used. Acceptance is usually indicated by the words "UL Approved" or "UL Listed."	$60062-2096$
USA	Www.ul.com	

Table 85: Authorities on Electrical Codes (continued)

Organization	Address	Web Site URL
National Electrical Manufacturing Association (NEMA) (USA only) Organization of electrical product manufacturers. Members develop consensus standards for cables, wiring, and electrical components.	NEMA 1300 N. 17th Street Rosslyn, Virginia 22209 USA	www.nema.org
Electronics Industries Alliance (EIA) Trade association that develops technical standards, disseminates marketing data, and maintains contact with government agencies in matters relating to the electronics industry.	EIA 2500 Wilson Boulevard Arlington, Virginia 22201 USA	www.eia.org
Federal Communications Commission (FCC) (USA only) Commission that regulates all interstate and foreign electrical communication systems that originate in the United States according to the Communications Act of1934. The FCC regulates all U.S. telephone and cable systems.	FCC 445 12th Street S.W. Washington, D.C. 20554 USA	www.fcc.gov

Setting up the Wiring Closet

Be aware of the following recommendations for your wiring closet:

- Make sure that your system is easily accessible for installation and service. See Rack Specifications and Recommendations on page 191 for more information.
- Use appropriate AC or DC power, power distribution, and grounding for your specific installation.
- Use a vinyl floor covering in your wiring closet. (Concrete floors accumulate dust, and carpets can cause static electricity.)
- Prevent unauthorized access to wiring closets by providing door locks. Install the equipment in a secured, enclosed, and restricted access location, ensuring that only qualified service personnel have access to the equipment.
- Provide adequate overhead lighting for easy maintenance.
- Be sure that each wiring closet has a suitable ground. All equipment racks and equipment installed in the closet should be grounded.
- Be sure that all system environmental requirements are met, such as ambient temperature and humidity.

Note
We recommend that you consult an electrical contractor for commercial building and wiring specifications.

Controlling the Temperature

Extreme Networks equipment generates a significant amount of heat. It is essential that you provide a temperature-controlled environment for both performance and safety.

Install the equipment only in a temperature- and humidity-controlled indoor area that is free of airborne materials that can conduct electricity. Too much humidity can cause a fire. Too little humidity can produce electrical shock and fire.

The ambient operating temperature for most Summit switches ranges from $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ or $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$. (Check the descriptions in Summit Switches on page 11 for the temperature range that applies to your switch model.) As with all electrical equipment, however, Extreme Networks product lifetimes degrade with increased temperature. Ideally, therefore, temperatures should be kept at or below $25^{\circ} \mathrm{C}\left(78^{\circ} \mathrm{F}\right)$.

Observe these additional thermal recommendations for the location where you plan to install your equipment:

- Ensure that the ventilation in the wiring closet is adequate to maintain a temperature below $40^{\circ} \mathrm{C}$ (104́F).
- Install a reliable air conditioning and ventilation system.
- Keep the ventilation in the wiring closet running during non-business hours; otherwise, the equipment can overheat.
- Maintain a storage temperature between $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ and $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$.

Table 86 summarizes the behavior of Summit switches when they experience high operating temperatures.

Safeguards are built into all Extreme Networks switches and power supply units to minimize the risk of fire.

Table 86: Thermal Shutdown and Restart Behavior

Switch Model(s)	Behavior
All models except those listed below	When internal system temperatures exceed the thermal shutdown temperature limit (typically about $20^{\circ} \mathrm{C}$ higher than normal system operating temperatures), the system's power supplies are turned off and the switch shuts down. The system remains in the OFF state until the system has sufficient time to cool and the internal thermal sensor measures a temperature lower than the maximum specified ambient temperature, at which time the system restarts automatically. Alternately, you can restart the system immediately by removing and then restoring all line power to the system.
$\times 430-8 p$	The switch is not equipped with a mechanism for thermal shutdown. When internal system temperatures exceed the thermal shutdown temperature limit (typically about $20^{\circ} \mathrm{C}$ higher than normal system operating temperatures), the system reboots and immediately restarts. You then have the option, through the CLI (Command Line Interface), of allowing the boot cycle to continue: ALert: Switch rebooted after reaching emergency shut-off temperature. Please evaluate the situation and make sure the causes of switch overheating are fixed before continuing. Continue booting? (Y/N) Alternately, you can restart the system immediately by removing and then restoring all line power to the system.

Table 86: Thermal Shutdown and Restart Behavior (continued)

Switch Model(s)	Behavior
$\times 430-24 \mathrm{t}$	The switch is not equipped with a mechanism for thermal shutdown. When high operating temperatures are experienced, the system fans are set to full speed and the switch remains Powered. X430-24p Alternately, you can restart the system by removing and then restoring all line power to the system.
X460-G2 (all models)	When internal system temperatures exceed the thermal shutdown temperature limit (typically about $20^{\circ} \mathrm{C}$ higher than normal system operating temperatures), the system's power supplies are turned off and the switch shuts down. The switch does not restart automatically, even after cooling. It remains in the OFF state until you remove and then restore all line power to the system.

Controlling the Humidity Level

To maximize equipment life, keep operating humidity between 50% and 70% relative humidity (noncondensing) during typical operation.

The equipment can operate between 10\% and 95\% relative humidity (non-condensing) for short intervals.

Providing Adequate Airflow

Be sure that cables and other equipment do not block the switch's air intake or outflow.
It is best to have at least 3 inches (8 cm) of clear space in front of the air intake and outflow vents on the sides of the switch; airflow moves from side to side. For proper airflow through a switch, leave clear space on the left and right sides of the switch.

Depending on other conditions in the equipment room, it may be possible to install the switches closer to each other; consult your Extreme Networks Customer Support representative for guidance.

Protecting Your System from ESD (Electrostatic Discharge)

Your system must be protected from static electricity or ESD (electrostatic discharge). Take the following measures to ensure optimum system performance:

- Remove materials that can cause electrostatic generation (such as synthetic resins) from the wiring closet.

Check the appropriateness of floor mats and flooring.

- Connect metal chassis, conduit, and other metals to ground using dedicated grounding lines.
- Use electrostatically safe equipment.

If you are working with pluggable interface modules, wear an ESD-preventive wrist strap and connect the metal end to a grounded equipment rack or other source of ground.

Rack Specifications and Recommendations

Racks should conform to conventional standards.

In the United States, use EIA Standard RS-310C: Racks, Panels, and Associated Equipment. In countries other than the United States, use IEC Standard 297. In addition, verify that your rack meets the basic mechanical, space, and earthquake requirements that are described in this section.

Mechanical Recommendations for the Rack

Use equipment racks that meet the following mechanical recommendations:

- Use an open style, 19-inch rack to facilitate easy maintenance and to provide proper ventilation.
- Use a rack made of steel or aluminum.
- The rack should use the universal mounting rail hole pattern that is identified in IEC Standard 297.
- The rack should have designated earth grounding connections (typically on the base).
- The rack must meet earthquake safety requirements equal to that of the installed chassis.
- The mounting holes should be flush with the rails to accommodate the chassis.
- The rack should support approximately 600 pounds (272 kilograms).

Grounding the Rack

The rack must be properly grounded.
Use a rack grounding kit and a ground conductor that is carried back to earth or to another suitable building ground.

At a minimum, follow these guidelines to ground equipment racks to the earth ground:

- CAD weld appropriate wire terminals to building I-beams or earth ground rods.
- For a Summit DC-powered switch, use a minimum 14 AWG stranded copper wire for grounding.

AC-powered Summit switches do not need separate chassis grounding.

- Position the earth ground as close to the equipment rack as possible to maintain the shortest wiring distance possible.
- Use a ground impedance tester or micro-ohm meter to test the quality of earth ground connection at the chassis. This will ensure good grounding between the chassis, rack, and earth ground.

Note

Because building codes vary worldwide, Extreme Networks strongly recommends that you consult an electrical contractor to ensure proper equipment grounding for your specific installation.

Providing Adequate Space for the Rack

Provide enough space in front of and behind the switch so that you can service it easily.

Allow a minimum of 48 inches (122 cm) in front of the rack and 30 inches (76 cm) behind the rack. When using a relay (two-post) rack, provide a minimum of 24 inches (61 cm) of space behind the mounted equipment. Extra room on each side is optional.

Warning

Extreme Networks switches do not have a switch for turning power to the unit on and off. For systems using an AC power supply, power to the switch is disconnected by removing the wall plug from the electrical outlet.

Warning

The DC-powered switches include the following models:

- Summit X450a-24tDC, X450a-24xDC, and X450a-48tDC
- Summit $\mathrm{X} 460, \mathrm{X} 480$, and X 650 series switches with installed DC power supplies

For these switches and the EPS-150DC power supply, turn off power to the chassis by deenergizing the circuit that feeds the power supply. This is usually accomplished by turning off a circuit breaker. Disconnecting the DC power cable from the DC power source must be done by a qualified, licensed electrician.

Securing the Rack

The rack should be attached to the wiring closet floor with 3/8-inch (9.5 mm) lag screws or equivalent hardware.

The floor under the rack should be level within 3/16-inch (5 mm). Use a floor-leveling cement compound if necessary or bolt the racks to the floor as shown.

Figure 187: Properly Secured Rack
Brace open equipment racks if the channel thickness is less than $1 / 4$ inch (6.4 mm).

Evaluating and Meeting Cable Requirements

Use professional consultants for site planning and cabling.

Extreme Networks recommends using the Building Industry Consulting Service International (BICSI) Registered Communications Distribution Designer (RCDD), which is globally recognized as a standard in site planning and cabling.

For information, visit www.bicsi.org.

Labeling Cables and Keeping Accurate Records

A reliable cable labeling system is essential when planning and installing a network.
Keeping accurate records helps you to:

- Relocate devices easily.
- Make changes quickly.
- Isolate faults in the distribution system.
- Locate the opposite end of any cable.
- Know the types of network devices that your cabling infrastructure can support.

Follow these guidelines when setting up a cable labeling system suitable for your installation:

- Identify cables by securely attaching labels to all cable ends.
- Assign a unique block of sequential numbers to the group of cables that run between each pair of wiring closets.
- Assign a unique identification number to each equipment rack.
- Identify all wiring closets by labeling the front panel of your Extreme Networks equipment and other hardware.
- Keep accurate and current cable identification records.
- Post records near each equipment rack. For each cable drop, include information about the cable source, destination, and jumper location.

Installing Cable

When you connect cable to your network equipment, keep the following things in mind.

- Examine cable for cuts, bends, and nicks.
- Support cable using a cable manager that is mounted above connectors to avoid unnecessary weight on the cable bundles.
- Use cable managers to route cable bundles to the left and right of the network equipment to maximize accessibility to the connectors.
- Provide enough slack, approximately 2 to 3 inches (5.08 to 7.62 cm), to provide proper strain relief as shown in Figure 188 on page 194.
- Bundle cable using hook-and-loop straps to avoid injuring cables.
- If you build your own cable, be sure that connectors are properly crimped.
- When installing a patch panel using twisted pair wiring, untwist no more than 1 inch $(2.54 \mathrm{~cm})$ of the cable to avoid radio frequency (RF) interference.
- Discharge the RJ45 Ethernet cable before plugging it into a port on the switch.

Caution

Unshielded twisted pair (UTP) cable can build up ESD charges when being pulled into a new installation. Before connecting any category 5 UTP cable to the switch, discharge ESD from the cable by plugging the RJ45 connector into a LAN static discharge device or use an equivalent method.

- Use plenum-rated cable when it is necessary for safety and fire rating requirements. Consult your local building codes to determine when it is appropriate to use plenum-rated cable, or refer to IEC standard 850.
- Keep all ports and connectors free of dust.

Figure 188: Properly Installed and Bundled Cable
1 = Adequate slack and bend radius

Handling fiber Optic Cable

Fiber optic cable must be handled carefully during installation.

Every cable has a minimum bend radius, example, and fibers will be damaged if the cables are bent too sharply. It is also important not to stretch the cable during installation. Extreme Networks recommends that the bend radius for fiber optic cable equal at least 2 inches (5 cm) for each 90 -degree turn as shown in Figure 189.

Note

Kinks and sharp bends can destroy or impair the cable's ability to convey light pulses accurately from one end of the cable to the other. Use care in dressing the optical fiber cables: provide satisfactory strain relief to support the cable and maintain an adequate bend radius at all cable turns, particularly where the cable connects to the I/O module.

Figure 189: Bend Radius for Fiber Optic Cable

```
1= Minimum 2-inch (5.08 cm) radius in 90
```


Cable Distances and Types

Table 87 shows cable media types and maximum distances that support reliable transmission in accordance with international standards (except where noted).

Table 87: Cable Distances and Types

Standard	Media Type	MHz•km Rating	Maximum Distance (Meters)
1000BASE-SX (850nm optical window)	$50 / 125 \mu$ m multimode fiber	400	500
	$50 / 125 \mu$ m multimode fiber	500	550
	$62.5 / 125 \mu$ m multimode fiber	160	220
	$62.5 / 125 \mu$ m multimode fiber	200	275

Table 87: Cable Distances and Types (continued)

Standard	Media Type	MHz•km Rating	Maximum Distance (Meters)
1000BASE-LX (1300nm optical window)	50/125 $\mu \mathrm{m}$ multimode fiber	400	550
	50/125 $\mu \mathrm{m}$ multimode fiber	500	550
	62.5/125 μ m multimode fiber	500	550
	10/125 $\mu \mathrm{m}$ single-mode fiber	-	5,000
	10/125 $\mu \mathrm{m}$ single-mode fiber ${ }^{2}$	-	10,000
1000BASE-ZX (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	80,000
100BASE-LX100 (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	100,000
1000BASE-BX10 (1490nm optical window) (1310nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	10,000
1000BASE-LX70 (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	70,000
10/100/1000BASE-T SFP	(1 Gbps link) Category 5 and higher UTP cable	-	100
	(100 Mbps link) Category 5 and higher UTP cable	-	150
	(10 Mbps link) Category 5 and higher UTP cable	-	250
10GBASE-SR SFP+ (850nm optical window)	62.5 mm multimode fiber	160	26
	62.5 mm multimode fiber (OM1)	200	33
	50 mm multimode fiber	400	66
	50 mm multimode fiber (OM2)	500	82
	50 mm multimode fiber (OM3)	2000	300
10GBASE-LR SFP+ (1310nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	10,000
10GBASE-LRM SFP+ (1310nm optical window)	62.5/125 $\mu \mathrm{m}$ multimode fiber	-	220
10GBASE-ER SFP+ (1550nm optical window)	10/125 $\mu \mathrm{m}$ single-mode fiber	-	40,000
40GBASE-SR4 QSFP+ (850nm optical window)	50 mm multimode fiber (OM3)	-	100
	50 mm multimode fiber (OM4)		150
1000BASE-T	Category 5 and higher UTP cable	-	100
100BASE-TX	Category 5 and higher UTP cable	-	100
10BASE-T	Category 3 and higher UTP cable	-	100

[^3]Table 88 lists the direct-attach cables available from Extreme Networks.

Table 88: Extreme Networks Direct-Attach Cables

Cable Type	Model Number	Length
SFP+ passive copper cable	10304	1 meter
	10305	3 meters
	10306	5 meters
	10307	10 meters
QSFP+ passive copper cable	10311	0.5 meter
	10312	1 meter
	10313	3 meters
	$10313 A$	3 meters (26 AWG)
QSFP+ active optical cable	10323	5 meters
	10315	10 meters
	10316	20 meters
	10318	100 meters

Using RJ45 Connector Jackets

Use RJ45 cable with connector jackets that are flush with the connector or that have connectors with a no-snag feature.

Using cable with jackets that are wider than the connectors can cause:

- Connectors that are not properly aligned with the port.
- Crowded cable installation, which can cause connectors to pop out of the port.

Figure 190 shows examples of recommended and non-recommended connector jacket types.

Figure 190: RJ45 Connector Jacket Types

Preventing Radio Frequency Interference (RFI)

If you use UTP cabling in an installation, take precautions to avoid radio frequency (RF) interference.
RF interference can cause degradation of signal quality, and, in an Ethernet network environment, can cause excessive collisions, loss of link status, or other physical layer problems that can lead to poor performance or loss of communication.

To prevent RF interference, avoid the following situations:

- Attaching UTP cable to AC power cables
- Routing UTP cable near antennas, such as a ham radio antenna
- Routing UTP cable near equipment that could exhibit RF interference, such as ARC welding equipment
- Routing UTP cable near electrical motors that contain coils
- Routing UTP cable near air conditioner units
- Routing UTP cable near electrical transformers

In areas or applications where these situations cannot be avoided, use fiber optic cabling or shielded twisted pair cabling.

Meeting Power Requirements

Observe the following requirements and precautions for powering your hardware.

Requirements for PoE Devices

When connecting PoE (Power over Ethernet) devices to a PoE switch, all connections between the PoE device and the switch must remain within the same building and use a low-voltage power distribution system per IEEE 802.3af.

Power Supply Requirements

Follow these recommendations when you plan power supply connections for Summit switches:

- Place the equipment in an area that accommodates the power consumption and component heat dissipation specifications.
- Be sure that your power supply meets the site DC power or AC power requirements of the network equipment.
- When you connect power to installed equipment, do not make this connection through an extension cord or power strip.
- If your switch includes more than one power supply, connect each power supply to a different, independent power source.

If a power source fails, it will affect only the switch power supply to which it is connected. If all switch power supplies are connected to a single power source, the entire switch is vulnerable to a power source failure.

- In regions that are susceptible to electrical storms, we recommend that you plug your system into a surge suppressor.

For power specifications for Summit switches, see Technical Specifications on page 424.

Requirements for Power Cords

Summit switches do not ship with power cords. Visit www.extremenetworks.com/product/powercords/ for information on selecting and purchasing the correct power cords for use with specific Extreme Networks equipment. The web page provides specifications for power cords in each country so that you can purchase cords locally.

AC power cords must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

UPS (Uninterruptible Power Supply) Requirements

A UPS (uninterruptible power supply) is a device that sits between a power supply (such as a wall outlet) and a device (such as a switch) to prevent outages, sags, surges, and bad harmonics from adversely affecting the performance of the device.

A UPS traditionally can perform the following functions:

- Absorb relatively small power surges.
- Smooth out noisy power sources.
- Continue to provide power to equipment during line sags.
- Provide power for a period of time after a blackout has occurred.

In addition, some UPS devices or UPS-plus-software combinations provide the following functions:

- Automatically shut down equipment during long power outages.
- Monitor and log power supply status.
- Display the voltage (current draw) of the equipment.
- Restart equipment after a long power outage.
- Display the voltage currently on the line.
- Provide alarms on certain error conditions.
- Provide short-circuit protection.

Selecting a UPS

To determine UPS requirements for your switch, answer these questions:

- What are the amperage requirements?
- What is the longest potential time period that the UPS would be required to supply backup power?
- Where will the UPS be installed?
- What is the maximum transition time that the installation will allow? (See Providing a Suitable UPS Transition Time on page 200.)

Note
We recommend that you use a UPS that provides online protection.

Calculating Volt-Amperage Requirements

To determine the size of UPS that you need:
1 Locate the voltage and amperage requirements for each piece of equipment.
These numbers are usually found on a sticker on the back or bottom of your equipment.
2 Multiply the numbers together to get Volt-Amperes (VA):
VA $=$ Volts \times Amperes
3 Add the VA from all the pieces of equipment together to find the total VA requirement.
To determine the minimum volt-amperage requirements for your UPS, we recommend that you add 30% to the total.

Providing a Suitable UPS Transition Time

UPS transition time is the time required for the UPS to change from providing AC power derived from the utility (or mains) supply to providing AC power derived from the battery backup. UPS transition time is sometimes called UPS transfer time.

UPS transition times vary between UPS models and implementations, but shorter transition times are preferred. For Extreme Networks stacking products, we recommend a UPS transition time of 20 milliseconds or less to ensure optimum performance and minimize service interruptions.

For high-availability and fault-tolerant installations in which the switches use redundant power supply units (PSUs), we recommend that each PSU in a switch be connected to a different UPS and that each UPS be powered by an independent AC supply. This will prevent service interruptions when a power source is lost, or when a UPS unit fails. (Note that a single, appropriately sized UPS can power PSUs in multiple switches. The recommendation is simply that for any given switch, the two PSUs should be connected to different UPS units.)

DC Power Requirements

This system should be installed in a DC-I battery return configuration.

In a DC-I configuration, the battery return conductor should be connected directly to the central office power return bus, and not to the equipment frame or the grounding means of the equipment.

Following Applicable Industry Standards

Always follow applicable industry standards.
For more information, see the following ANSI/TIA/EIA standards:

- ANSI/TIA/EIA-568-A-the six subsystems of a structured cabling system
- ANSI/TIA/EIA-569-A-design considerations
- ANSI/TIA/EIA-606-cabling system administration
- ANSI/TIA/EIA-607-commercial building grounding and bonding requirements

You can access these standards at: www.ansi.org or www.tiaonline.org.

5 Building Stacks

Introduction to Stacking

Planning to Create Your Stack
Setting up the Physical Stack

A stack consists of a group of up to eight switches that are connected to form a ring. The stack offers the combined port capacity of the individual switches. But it operates as if it were a single switch, making network administration easier.

Stacking is facilitated by the SummitStack feature - part of the ExtremeXOS Edge license.
This chapter describes the supported configurations for stacking switches, the considerations for planning a stack, and the steps for setting up the hardware. We recommend that you read this chapter before installing the switches that will make up the stack.

Refer to the Stacking chapter in the ExtremeXOS 16.2 User Guide for information about configuring a stack, maintaining the stack configuration, and troubleshooting.

Introduction to Stacking

Using the SummitStack feature - part of the ExtremeXOS Edge license - a stack can combine switches from different series, provided that every switch in the stack:

- Runs in the same partition (primary or secondary).
- Runs the same version of ExtremeXOS.
- Includes support for stacking.

The stack operates as if it were a single switch with a single IP address and a single point of authentication. One switch - called the master switch - is responsible for running network protocols and managing the stack. The master runs ExtremeXOS software and maintains all the software tables for all the switches in the stack.

All switches in the stack, including the master switch, are called nodes. Figure 191 shows four nodes in a stack, connected to each other by SummitStack cables.

Figure 191: Switches Connected to Form a Stack
The following sections introduce you to the basic principles of stacking and provide recommendations for creating stacks.

More information to answer your questions about stacking and help you plan your configuration is available on the Extreme Networks GTAC Knowledge Base.

Building Basic Stacks

A stack can be created in either of two ways:

- In native stacking, switches are connected using either designated Ethernet data ports or dedicated stacking connectors.
- In alternate stacking, switches are connected using 10-Gbps Ethernet data ports that have been configured for stacking. These ports are located either on the switch itself or on option cards installed on the rear of the switch.

When planning and building your stack, be sure to follow port compatibility and cabling recommendations as described in this chapter.

See Combining Switches from Different Series on page 233 for information about which switch series can be combined to form a stack.

Slot Numbers in Stacks

A switch stack can be thought of as a virtual chassis. Each switch (node) operates as if it were occupying a slot in a chassis and is controlled by the master. The high-speed stacking links function like the backplane links of a chassis.

Each switch in the stack is assigned a "slot number" during the initial software configuration of the stack. Starting at the switch with the console connection, numbers are assigned in numerical order following the physical path of the connected stacking cables. For example, if you follow the cabling recommendations presented in Connecting the Switches to Form the Stack Ring on page 239 and
configure a vertical stack from the console on the switch at the top of the physical stack, the switches will be assigned slot numbers 1 through 8 from the top down.

Some stackable switches have a seven-segment LED, called the stack number indicator on the front panel. (See Figure 192.) When a stack is operating, the indicator displays the switch's slot number. This LED does not light on switches that are not currently operating as part of a stack.

The top half of the number blinks if the switch is the master, and the bottom half blinks if it is the backup. If the LED is steadily lit, the switch is a standby. If the LED is off the switch is not configured as a member of a stack.

Figure 192: Position of the Stack Number Indicator (X460-G2 Switch Shown)
In addition to the Stack Number Indicator, each stacking port has an LED. The LED is steady green if the link is OK, blinking green if traffic is present, and off if no signal is present.

A quick way to verify that the cable connections match the software configuration is to check the stack number indicator on each switch. If the slot numbers do not line up in the order you arranged the switches, this might indicate that the stacking cable setup differs from what you intended when you configured the software. In this case, reconnect the cables in the correct order and perform the software configuration again.

Master/Backup Switch Redundancy

When your stack is operational, one switch is the master switch, responsible for running network protocols and managing the stack.

To provide recovery in case of a break in the stack connections, you can configure redundancy by designating a backup switch to take over as master if the master switch fails. When you perform the initial software configuration of the stack, the "easy setup" configuration option automatically configures redundancy, with slot 1 as the master and slot 2 as the backup. You can also configure additional switches as "master-capable," meaning they can become a stack master in case the initial backup switch fails.

When assigning the master and backup roles in mixed stacks, consider the feature scalability and the speed of each switch model. The easy setup configuration process selects master and backup switches, based on capability and speed, in the following order:

1 Summit X670-G2
2 Summit X460-G2
3 Summit X770
4 Summit X450-G2

For example, in a stack that combines Summit X460-G2 or X670-G2 switches with other switch models, an X460-G2 or X670-G2 switch might provide more memory and more features than other switches in the stack. Consider these differences when selecting a master node, selecting a backup node, and configuring failover operation.

Note

We recommend that the master and backup roles be assigned to switches from the same series. For example, if the master node is an X460-G2 switch, the backup node should also be an X460-G2 switch. Similarly, if the master node is an X670-G2 series switch, the backup node should also be an X670-G2 switch.

When easy setup compares two switches that have the same capability, the lower slot number takes precedence.

We recommend that you follow the same ranking hierarchy when you plan the physical placement of the switches in the stack.

SummitStack Topologies

Figure 193 presents a graphical representation of a stack and some of the terms that describe stack conditions.

Figure 193: Example of a Stack, Showing the Active Topology and the Stack Topology
A stack is the collection of all switches, or nodes, that are cabled together to form one virtual switch using the ExtremeXOS SummitStack feature.

The maximum cable length supported between switches depends on the types of switches in your stack, the installed option cards, and the configured stacking ports. For more information, see Planning to Create Your Stack on page 214.

A stack topology is the set of contiguous nodes that are powered up and communicating with each other. In the example shown, Switch 8 is not part of the stack topology because it is not powered up.

An active topology is the set of contiguous nodes that are active. An active node is powered up, is configured for stack operation, and is communicating with the other active nodes.

Switch 5 in the example has failed, stacking is disabled on Switches 6 and 7, and Switch 8 has no power. As a result, the active topology includes Switches 1 through 4 only.

For more information about SummitStack terminology, see SummitStack Terms on page 212.

Ring Topology: Recommended for Stacking

SummitStack nodes should be connected to each other in a ring topology. In a ring topology, one link is used to connect to a node and the other link is used to connect to another node. The result forms a physical ring connection. This topology is highly recommended for normal operation.

Figure 194 represents a maximal ring topology of eight active nodes.

Figure 194: Graphical Representation of a Ring Topology
Figure 195 shows what the same ring topology would look in actual practice. Each switch in the rack is connected to the switch above it and the switch below it. To complete the ring, a longer cable connects Switch 1 with Switch 8.

Figure 195: Switches Connected to Each Other in a Ring Topology
Note that, while a physical ring connection may be present, a ring active topology exists only when all nodes in the stack are active.

Daisy Chain Topology: Not Recommended for Stacking
Stackable switches can be connected in a daisy-chain topology. This is a ring topology with one of the links disconnected, inoperative, or disabled. A daisy chain can be created when a link fails or a node reboots in a ring topology, but the daisy chain topology is not recommended for normal operation.

We strongly recommend that your stack nodes be connected in a ring topology, not a daisy-chain topology, for normal operation.

In Figure 196, the nodes delineated as the active topology are operating in a daisy-chain configuration, even though there is physically a ring connection in the stack.

Figure 196: Daisy-Chain Topology

You might need to use a daisy chain topology while adding a new node, removing a node, or joining two stacks.

If you are using a daisy chain topology, the possibility of a dual master condition increases. Before you create a daisy chain topology, read ExtremeXOS 16.2 User Guide.

Using Ethernet Ports for Stacking (SummitStack-V Feature)

On many Extreme Networks switches, you can reconfigure one or two 10-Gbps Ethernet data ports to operate as stacking ports.

This feature, known as SummitStack-V or alternate stacking, means that you can use less expensive cables to connect the switches in a stack. Because copper and fiber Ethernet ports support longer cable distances, you can also extend the physical distance between stack nodes - connecting, for example, switches on different floors in a building or in different buildings on a campus.

The SummitStack-V feature means that you can stack switches that have no dedicated (or native) stacking ports but that do have at least two Ethernet ports. The ports can can be configured to support either data communications or the stacking protocol. When configured to support stacking, they are called alternate stacking ports to distinguish them from the native stacking ports that use custom cables.

A single stack can use both native stacking ports and alternate stacking ports. On one switch, for example, you can use a native stacking port to connect to a switch in the same rack, and you can use an alternate stacking port to connect to a switch on a different floor.

Note

When you connect distant nodes using alternate stacking ports, be sure to run the cables over physically different pathways to reduce the likelihood of a cut affecting multiple links.

On each switch model, only specific data ports can be used as alternate stacking ports. The alternate stacking ports must be 10-Gbps Ethernet ports, either on the front panel of the switch or on installed port option cards or versatile interface modules at the rear of the switch. Switch models that do not have native stacking ports can still use alternate stacking if they have 10-Gbps Ethernet ports.

Alternate stacking ports on different switches must be directly connected, with no intervening switch connections. This is because alternate stacking ports use the proprietary ExtremeXOS stacking protocol, not the standard Ethernet protocol.

Table 89 lists the data ports that can be used as native and alternate stacking ports for each switch model.

When the stacking-support option is enabled (with the enable stacking-support command), data communication stops on the physical data ports that are designated for alternate stacking. Then, when stacking is enabled (with the enable stacking command), those ports - listed in the Alternate Stacking Ports column of Table 89 - operate using the stacking protocol for the logical stacking ports.

Table 89: Native and Alternate Stacking Ports

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X440-24t-10G X440-24x-10G X440-24p-10G	None	25,26	Front panel
X440-48t-10G X440-48p-10G	None	49,50	Front panel
X450a-24t X450a-24tDC X450a-24x X450a-24xDC X450e-24t X450e-24p	Fixed (rear panel)	25,26	XGM2-2xf or XGM2-2xn or XGM2-2sf or XGM2-2bt
X450a-48t X450a-48tDC X450e-48t X450e-48p	Fixed (rear panel)	49,50	XGM2-2xf or XGM2-2xn or XGM2-2sf or
X450-G2-24t-10GE4 X450-G2-24p-10GE4	Fixed (rear panel)	27,28	Front panel
X450-G2-48t-10GE4 X450-G2-48p-10GE4	Fixed (rear panel)	51,52	Front panel

Table 89: Native and Alternate Stacking Ports (continued)

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
$\begin{aligned} & \text { X460-24t } \\ & \text { X460-24x } \\ & \times 460-24 p \end{aligned}$	SummitStack module or SummitStack-V80 module	$\begin{array}{\|l\|} \hline S 1, S 2 \\ (29,30) \end{array}$	XGM3-2sf or XGM3S-2sf or XGM3S-2xf
$\begin{array}{\|l\|} \hline \times 460-48 t \\ \times 460-48 p \end{array}$	SummitStack module or SummitStack-V80 module	$\begin{array}{\|l\|} \hline S 1, S 2 \\ (53,54) \end{array}$	XGM3-2sf or XGM3S-2sf or XGM3S-2xf
X460-48x	SummitStack module or SummitStack-V80 module	$\begin{array}{\|l\|} \hline \mathrm{S} 1, \mathrm{~S} 2 \\ (49,50) \end{array}$	XGM3S-2sf or XGM3S-2xf
$\begin{aligned} & \text { X460-G2-24t-GE4 } \\ & \text { X460-G2-24p-GE4 } \end{aligned}$	VIM-2ss or VIM-2a	33,34	VIM-2t or VIM-2x
$\begin{aligned} & \text { X460-G2-48t-GE4 } \\ & \text { X460-G2-48p-GE4 } \end{aligned}$	VIM-2ss or VIM-2a	53,54	VIM-2t or VIM-2x
X460-G2-24t-10GE4 X460-G2-24x-10GE4 X460-G2-24p-10GE4	VIM-2ss or VIM-2a	31,32	Front panel
X460-G2-48t-10GE4 X460-G2-48x-10GE4 X460-G2-48p-10GE4	VIM-2ss or VIM-2a	51,52	Front panel
X480-24x	None: VIM has only data ports	$\begin{array}{\|l\|} \hline S 3, S 4 \\ (29,30) \end{array}$	VIM2-10G4X module
	None: No installed VIM	25,26	Front panel
	VIM2-SummitStack module VIM2-SummitStack128 module VIM2-SummitStack-V80 module VIM3-40G4X	25,26	Front panel
$\begin{aligned} & \text { X480-48t } \\ & \times 480-48 x \end{aligned}$	None: VIM has only data ports	$\begin{array}{\|l} \hline \text { S3,S4 } \\ (51,52) \end{array}$	VIM2-10G4X module
x670-48x	None	47,48	Front panel
$\begin{aligned} & \text { X670V-48t } \\ & \text { X670V-48x } \end{aligned}$	VIM4-40G4X	47,48	Front panel
X670-G2-48x-4a	Ports 49,53,57,61	47,48	Front panel
X670-G2-72x	None	71,72	Front panel
X770-32a	Ports 101,102,103,104	103,104	Front panel

Available Stacking Methods

Each Summit switch model can use various methods of stacking.
Table 90 shows the switch models that can participate in each stacking method.

Table 90: Summit Stacking by Stacking Method

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths	Switch Models
SummitStack	10 Gbps	0.5 m, 1.5 m, 3.0 m, 5.0 m, 20 Gb Stacking Cable	Summit X440, X460, X460-G2, X480
SummitStack-V	10 Gbps	$\begin{aligned} & 0.5 \mathrm{~m}-40 \mathrm{~km} \\ & \text { SFP+, XENPAK (with SR, } \\ & \text { LR, and ER) } \end{aligned}$	```Summit X440 Summit X450-G2 (10G models) Summit X460 (with XGM3-2sf, 2xsf), Summit X460-G2 (1G models with VIM-2x, VIM-2t) Summit X460-G2 (10G models) Summit X480 (VIM2,3) Summit X670 and X670V (ports 47 and 48), Summit X670-G2 Summit X770 (ports 103,104)```
SummitStack-V80	20 Gbps	$\begin{aligned} & 0.5 \mathrm{~m}-100 \mathrm{~m} \\ & \text { QSFP+ only } \end{aligned}$	$\begin{aligned} & \text { Summit X460 (SSV80) } \\ & \text { Summit X480 (VIM2,3) } \\ & \text { Summit X670V (VIM4-40G4X) } \\ & \text { Summit X670-G2-48x-4q (ports 57, 61) } \end{aligned}$
SummitStack-V84	21 Gbps	$\begin{aligned} & 0.5 m-5 \mathrm{~m} \\ & \text { QSFP+ passive copper } \end{aligned}$	Summit X450-G2 (rear panel 21G stacking ports)
SummitStack-V160	40 Gbps	$\begin{aligned} & 0.5 \mathrm{~m}-100 \mathrm{~m} \\ & \text { QSFP+ only } \end{aligned}$	$\begin{aligned} & \text { X460-G2 (VIM-2q) } \\ & \text { Summit X480 (VIM3) } \\ & \text { Summit X670 (VIM4) } \\ & \text { Summit X670-G2-48x-4q (ports 57, 61) } \\ & \text { Summit X770 (ports } 103 \text { and 104) } \end{aligned}$
SummitStack-V320	$80 \mathrm{Gbps}^{3}$	$\begin{aligned} & 0.5 \mathrm{~m}-100 \mathrm{~m} \\ & \text { QSFP+ only } \end{aligned}$	Summit X480 (VIM3) Summit X670 (VIM4) Summit X670-G2-48x-4q (ports 49, 53, 57, 61) Summit X770-32q (ports 101 and 103, and 102 and 104)
SummitStack128	32 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}$	Summit X480 (VIM2-SS128) ${ }^{4}$

For more details about the stacking methods that are available for each switch series, see the topics listed in Stacking Considerations for Each Switch Model on page 216.

Note

Because all switches in the stack must run the same version of ExtremeXOS, it is not possible to stack switches that require ExtremeXOS version 21, for example the X440-G2 and the X620, with switches that are incompatible with ExtremeXOS version 21, for example the X440 and the $\times 460$.

[^4]
SummitStack Terms

Table 91 describes the terms used for the SummitStack feature. These terms are listed in the recommended reading sequence.

Table 91: List of Stacking Terms

Term	Description
Stackable switch	An ExtremeSwitching or Summit family switch that provides two stacking ports and can participate in a stack.
Stacking port	A physical interface of a stackable switch that is used to allow the connection of a stacking link. Stacking ports are point-to-point links that are dedicated for the purpose of forming a stack.
Native stacking	A stacking configuration in which stack members are connected using either designated Ethernet data ports or dedicated stacking connectors.
Alternate stacking	A stacking configuration in which stack members are connected using 10-Gbps Ethernet data ports that have been configured for stacking. These ports are located either on the switch itself or on option cards installed on the rear of the switch.
Stacking link	A cable that connects a stacking port of one stackable switch to a stacking port of another stackable switch, plus the stacking ports themselves.
Node	A switch that runs the ExtremeXOS operating system and is part of a stack. Synonymous with stackable switch.
Stack	A set of stackable switches and their connected stacking links made with the intentions that: (1) all switches are reachable through their common connections; (2) a single stackable switch can manage the entire stack; and (3) configurable entities such as VLANs and link trunk groups can have members on multiple stackable switches. A stack consists of all connected nodes regardless of the state of the nodes.
Stack topology	A contiguously connected set of nodes in a stack that are currently communicating with one another. All nodes that appear in the show stacking command display are present in the stack topology.
Stack path	A data path that is formed over the stacking links for the purpose of determining the set of nodes that are present in the stack topology and their locations in the stack. Every node is always present in a stack path whether or not stacking is enabled on the node.
Control path	A data path that is formed over the stacking links that is dedicated to carrying control traffic, such as commands to program hardware or software image data for software upgrade. A node must join the control path to fully operate in the stack. A node that is disabled for stacking does not join the control path, but does communicate over the stack path.
Active node	A node that has joined the control path. The active node can forward the control path messages or can process them. It can also forward data traffic. Only an active node can appear as a card inserted into a slot when the show slot $\{$ slot \{detail\} \| detail \} command is executed on the master node of the stack.
Active topology	A contiguous set of active nodes in a stack topology plus the set of stacking links that connect them. When an active topology consists of more than one node, each node in the active topology is directly and physically connected to at least one other node in the active topology. Thus, the active topology is a set of physically contiguous active nodes within a stack topology.

Table 91: List of Stacking Terms (continued)

Term	Description
Candidate node	A node that is a potential member of an active topology, or an active node that is already a member of an active topology. A candidate node may or may not be an active mode - that is, it may or may not have joined the control path.
Node role	The role that each active node plays in the stack - either master (or primary), backup, or standby.
Master node	The node that is elected as the master (or primary) node in the stack. The master node runs all of the configured control protocols such as OSPF (Open Shortest Path First), RIP (Routing Information Protocol), Spanning Tree, and EAPS (Extreme Automatic Protection Switching). The master node controls all of its own data ports as well as all data ports on the backup and standby nodes. To accomplish this, the master node issues specific programming commands over the control path to the backup and standby nodes.
Backup node	The node assigned to take over the role of master if the master node fails. The master node keeps the backup node's databases synchronized with its own databases in preparation for such an event. If and when the master node fails, the backup node becomes the master node and begins operating with the databases it has previously received. In this way, all other nodes in the stack can continue operating.
Standby node	A node that is prepared to become a backup node in the event that the backup node becomes the master node. When a backup node becomes a master node, the new master node synchronizes all of its databases to the new backup node. When a node operates in a standby role, most databases are not synchronized except those few that directly relate to hardware programming.
Acquired node	A standby or backup node that is acquired by a master node. This means that the master node has used its databases to program the hardware of the standby or backup node. The standby or backup node has acted as a hardware programming proxy, accepting the instructions of the master node to do so. An acquired backup node maintains the databases needed to reflect why the hardware is programmed as it is. However, a standby node does not. An acquired node can be re-acquired (without a reboot) by the backup node only when the backup node becomes the master node, and only when both the backup and standby nodes were already acquired by the same master node at the time of its failure.
Data ports	The set of ports on a stackable switch that are available for connection to your data networks. Such ports can be members of a user-configured VLAN (Virtual $L A N$) or trunk group. They can be used for Layer 2 and 3 forwarding of user data traffic, for mirroring, or other features you can configure. Data ports are different from stacking ports.
Failover	The process of changing the backup node to the master node when the original master node has failed. When a master node fails, if a backup node is present, and if that node has completed its initial synchronization with the master node, then the backup node assumes the role of master node. The standby nodes continue their operation and their data ports do not fail.
Hitless failover	A failover in which all data ports in the stack, except those of the failing master node, continue normal operation when the master node fails.
Node address	The unique MAC address that is factory-assigned to each node.

Table 91: List of Stacking Terms (continued)

Term	Description
Node role election	The process that determines the role for each node. The election takes place during initial stack startup and elects one master node and one backup node. An election also takes place after a master node failover, when a new backup node is elected from the remaining standby nodes.
Node role election priority	A priority assigned to each node, to bee used in node role election. The node with the highest node role election priority during a role election becomes the master node. The node with the second highest node role election priority becomes the backup.
Operational node	A node that has achieved operational state as a card in a slot. The operational state can be displayed using the show slot \{ slot \{detail \} detail \}command.
System uptime	The amount of time that has passed since the last node role election. You can display the system uptime by entering the show switch \{detail \} command on the master node.
Stack segment	A collection of nodes that form a stack topology. The term is useful when a stack is severed. Each severed portion of the stack is referred to as a stack segment.
A state assigned by the stack to a node. You can display the stack state by entering the show stacking command.	
A procedure that automatically configures the essential stacking parameters on every node for initial stack deployment, and then automatically reboots the stack to put the parameters into effect. The choice to run Easy Setup is offered when you run the enable stacking \{node-address node-address command and the essential stacking parameters are unconfigured or inconsistent. It can also be invoked directly by running the configure stacking easy-setup command.	

Planning to Create Your Stack

Use the information in the following topics to plan the physical makeup of your stack - switches, versatile interface modules (VIMs), and cables - and the stacking protocols you will use. Included are:

- Guidelines and other information for each switch model in your stack
- Considerations for combining different switch models in a stack
- Information about stacking cables

Enabling and Disabling the Stacking-Support Option

The stacking-support option is enabled by default for many switch and option card configurations. However, some configurations require you to enable the stacking-support option before a switch can participate in a stack.

The topics in Stacking Considerations for Each Switch Model on page 216 describe whether or not each switch model has stacking support enabled by default.

- To enable stacking-support, issue the enable stacking-support command. You must enable stacking-support individually for every switch in the stack that does not have stacking support enabled by default.
- To disable stacking support, configure the switch data ports to use the Ethernet protocol instead of the stacking protocol. Use the disable stacking-support command.

Recommendations for Placing Switches for Stacked Operation

For best results in a SummitStack configuration, follow these recommendations for physically situating your equipment:

- Use the shortest possible stacking cables to connect the switches in the stack. This reduces the likelihood that the stacking cables might accidentally be damaged or disconnected. Stacking cables are available in lengths ranging from 0.3 meters to 100 meters.
- When possible, place all switches for the stack in the same rack or in adjacent racks. This facilitates using shorter stacking cables.
- The stack master is the switch, or node, through which you will perform the initial stack configuration, using the console port. For simplicity and ease of connecting the stacking cables, plan to designate the top switch in a vertical physical stack as the stack master. If switches are installed in several adjacent racks, place the stack master at one end of the row.
- Physically locate the intended master and backup nodes adjacent to each other, and plan to connect these nodes to each other directly so that ExtremeXOS application synchronization traffic is localized to a single stack link.
- On the master node, connect the Ethernet management port to your management network.
- To provide management access to the stack in case of a failure in the master switch, connect all switches that will participate in redundancy to your management network using the Ethernet management port on each switch.
- Use stacking cables to interconnect the stack nodes into a ring topology (see Ring Topology: Recommended for Stacking on page 206). Include only the nodes that you expect to be active in the stack.
- When you use the SummitStack 128G cable, SummitStack 64G cable, or SummitStack 128G/64G cable, we strongly recommend the use of cable management hardware to support the weight of the cables and to provide strain relief at the connectors.

Follow the recommendations in Recommendations for Configuring Stacks on page 215 to configure the software for your stack.

The recommended procedures for installing and interconnecting a stack are found in Setting up the Physical Stack on page 239.

Recommendations for Configuring Stacks

When deploying a new stack, follow these recommendations for configuring the software:

- Plan to use the stack as if it were a single multi-slot switch. You need to decide the number and type of stackable switches in the stack and how the stack ports will be connected to the network.
- You can physically connect the stack to your networks before the nodes are configured. However, the default configuration on a switch in non-stacking mode assumes a default untagged VLAN that
contains all switch ports. When first powered on, the switch acts as a Layer 2 switch, possibly resulting in network loops.
- Make sure all nodes support the SummitStack feature and are running the same ExtremeXOS software version. (See ExtremeXOS 16.2 Feature License Requirements.) To view the ExtremeXOS software version on a node, restart the node and run the command:

```
show version {detail | process name | images {partition partition}
{slot slot_number} }.
```

If any node does not have the right version, install the correct version on that node. Use the same image partition on all nodes. After stacking is enabled, images can be upgraded from the stack only if the same image is selected on all nodes.

- If you intend to deploy new units that might be part of a stack in the future, turn on stacking mode during initial deployment to avoid the need for a future restart. The only disadvantages of stacking mode are the loss of QoS (Quality of Service) profile QP7 and the reservation of some of the packet buffer space for stacking control traffic.
- You can configure the stack by logging into the master or any of the other nodes.
- If the master-capable stackable switches have different purchased license levels, you might need to configure license level restrictions on some nodes before those nodes can join the stack. See the ExtremeXOS 16.2 User Guide for more information about managing licenses.
- If the stack supports any feature pack license (such as MPLS (Multiprotocol Label Switching) or Direct Attach), that feature pack license must be installed on all master-capable nodes to support that feature and to prevent traffic interruption if a failover event occurs.
- Most stacking specific configurations are effective only after a restart. However, most non-stacking configuration commands take effect immediately and require no restart.
- A basic stack configuration can be achieved by using the Easy Setup procedure, as described in the ExtremeXOS 16.2 User Guide.
- If EAPS, Spanning Tree, or any Layer 2 redundancy protocol is not running on the network, make sure that your network connections do not form a network loop.

Follow the recommendations in Recommendations for Placing Switches for Stacked Operation on page 215 for physically situating your equipment.

Stacking Considerations for Each Switch Model on page 216 contains additional recommendations for the specific switch models in your stack.

Stacking Considerations for Each Switch Model

The following topics list basic information and special considerations pertaining to stacking for each of the Summit switch models.

- Summit X250e and X450a/e Stacking on page 217
- Summit $\times 440$ Stacking on page 217
- Summit X450-G2 Stacking on page 219
- Summit X460 Stacking on page 220
- Summit X460-G2 Stacking on page 222
- Summit $\times 480$ Stacking on page 225
- Summit X650 Stacking on page 227
- Summit $\times 670$ Stacking on page 228
- Summit X670-G2 Stacking on page 229
- Summit $\times 770$ Stacking on page 231

Summit $\times 250$ e and $X 450$ a/e Stacking
Many switches, including most Summit X250e, X450a, and X450e series models, have standard stacking ports built in. The stacking ports are found on the rear of the switch.

Use any standard SummitStack stacking cables to connect the stacking ports.
The stacking-support option is disabled by default for Summit X250e, X450a, and X450e switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X450a and X450e switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

To use alternate stacking on a Summit X450a or X450e switch, you must install an XGM2-2xf, XGM2-2xn, XGM2-2sf, or XGM2-2bt port option card to add 10-Gbps ports to the switch.

Table 92 summarizes alternate stacking support for $X 450$ a and $X 450$ e switches.

Table 92: Alternate Stacking Ports for X450a and X450e Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X450a-24t X450a-24tDC X450a-24x X450a-24xDC X450e-24t X450e-24p	Fixed (rear panel)	25,26	XGM2-2xf or XGM2-2xn or XGM2-2sf or XGM2-2bt
X450a-48t X450a-48tDC X450e-48t			XGM2-2xf or XGM2-2xn or X450e-48p

Summit $\times 440$ Stacking

The stacking-support option is enabled by default for Summit X440 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is disabled by default for X 440 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 93: Stacking Methods for X440 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack (Front panel for 8t and 8p models. Rear panel for all other models except 10G models; 10G models do not have native stacking ports)	10 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}$
SummitStack-V (Front panel 10G models)	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+ +

Many switches, including most Summit $\times 440$ series models, have standard stacking ports built in. Except in the case of the X 440 8-port models, the stacking ports are found on the rear of the switch, as shown in the following illustration.

Figure 197: Stacking Ports on Rear of Switch (Summit X440-24t Shown)

1 = AC power input connectors	3 = Redundant power connector
2 = Stacking ports	

Use any standard SummitStack stacking cables to connect the stacking ports.
Alternate stacking is supported for most X440 switches, as summarized in Table 94.

Table 94: Alternate Stacking Ports for X440 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X440-24t-10G X440-24x-10G X440-24p-10G	None	25,26	Front panel
X440-48t-10G X440-48p-10G	None	49,50	Front panel

Note

- On X440 24-port switches, ports 25 and 26 are not available as data ports when the alternate stacking ports are used.
- On X440 48-port switches, ports 49 and 50 are not available as data ports when the alternate stacking ports are used.

Summit X450-G2 Stacking

The stacking-support option is enabled by default for X450-G2 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X450-G2 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 95: Stacking Methods for X450-G2 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack-V84 Uses rear panel dedicated 21 Gb stacking ports Available only in stacks of Summit X450-G2 switches running the same version of ExtremeXOS	21 Gbps	$0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 3.0 \mathrm{~m} .5 .0 \mathrm{~m}$ QSFP+ passive copper cable
SummitStack-V (Front panel 10G models)	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+

Native Stacking for X450-G2 Switches

For native stacking with the X450-G2 switch, use the two fixed 21 Gb QSFP+ stacking ports on the rear of the switch, as shown in Figure 198. These stacking ports provide SummitStack-V84 stacking and can be stacked natively only with other X450-G2 switches.

SummitStack-V84 connections require direct-connect QSFP+ copper cables.
The $\mathrm{X} 450-\mathrm{G} 2$ is the only Summit switch that supports SummitStack-V84.

Figure 198: X450-G2 Switch: Native Stacking Ports

$1=21$ Gb QSFP+ stacking ports	$2=$ Grounding lug

Alternate Stacking for X450-G2 Switches

Alternate stacking (SummitStack-V) is supported for the X450-G2 10GE4 switch models, as summarized in Table 96. Use the front-panel 10G ports for alternate stacking.

Table 96: Alternate Stacking Ports for X450-G2 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X450-G2-24t-10GE4 X450-G2-24p-10GE4	Fixed (rear panel)	27,28	Front panel
X450-G2-48t-10GE4 X450-G2-48p-10GE4	Fixed (rear panel)	51,52	Front panel

Additional Stacking Considerations for X450-G2 switches

Before deploying a new stack with Summit X450-G2 switches, consider the following guidelines:

- Only the SummitStack-V and SummitStack-V84 stacking protocols are supported for the X450-G2 switch. SummitStack-V80 is not supported.
- In a stack that contains $\mathrm{X} 450-\mathrm{G} 2$ switches and other switch models, the $\mathrm{X} 450-\mathrm{G} 2$ switch might provide more memory and more features than the other switch models. Take this into account when you decide which switches will serve as the master and backup nodes, and when you configure failover operation.
- To use the failover feature in the stack, a second Summit X450-G2 switch is recommended. It must be the backup node.
- If any supported feature pack is installed on the master-capable X450-G2 nodes, the following guidelines apply:
- Every switch in the stack must meet the software and hardware requirements listed in the Feature License Requirements document.
- Only the enhanced stacking protocol is supported for the X450-G2 switch. Every node that shares a stack with an X450-G2 switch must have enhanced stacking configured.
- We recommend against mixing X450-G2, X460-G2, X670-G2, and X770 switches in a stack.
- X450-G2 switches support multiple types of QSFP+ stacking cables for connection between rear stacking ports (21 Gb ports) and QSFP+ ports on other Summit switches. For information on which cables to use with each type of Summit family switch, see Selecting Stacking Cables on page 235.

Summit $\times 460$ Stacking

The stacking-support option is disabled by default for Summit X460 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X460 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 97: Stacking Methods for X460 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack (rear panel, with module)	10 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}, 5 \mathrm{~m}$ 20 Gb Stacking Cable
SummitStack-V80 (with SSv80)	20 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V (with XGM3-2sf, XGM3S-2sf, XGM3S-2xf)	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+, XFP

For X460 native stacking, install a VIM2-SummitStack or VIM2-SummitStack-V80 port option card into the rear of the switch.

The VIM2-SummitStack port option card requires standard SummitStack cables.

Figure 199: VIM2-SummitStack Port Option Card
The VIM2-SummitStack-V80 port option card uses 40G QSFP+ cables to make the stacking port connections.

Figure 200: VIM2-SummitStack-V80 Port Option Card
For a complete listing of compatible cables and optical transceivers, see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

To use alternate stacking on a Summit X460 switch, you must install an XGM3-2sf, XGM3S-2sf, or XGM3S-2xf port option card to add 10-Gbps ports to the switch. Table 98 shows which port option cards are compatible with each X460 switch model for alternate stacking.

Table 98: Alternate Stacking Ports for X460 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X460-24t X460-24x X460-24p	SummitStack module or SummitStack-V80 module	S1,S2 $(29,30)$	XGM3-2sf or XGM3S-2sf or XGM3S-2xf
X460-48t X460-48p	SummitStack module or SummitStack-V80 module	S1,S2 $(53,54)$	XGM3-2sf or XGM3S-2sf or XGM3S-2xf
X460-48x	SummitStack module or SummitStack-V80 module	S1,S2 $(49,50)$	XGM3S-2sf or XGM3S-2xf

Summit X460-G2 Stacking

The stacking-support option is enabled by default for X460-G2 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X460-G2 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 99: Stacking Methods for X460-G2 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack (rear panel, with VIM) See Native Stacking for X460-G2 Switches on page 222.	10 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}, 5.0 \mathrm{~m}$
SummitStack-V160 (rear panel, with VIM) See Native Stacking for X460-G2 Switches on page 222.	40 Gbps	QSFP+
SummitStack-V (front panel 10G models) See Alternate Stacking for X460-G2 Switches on page 223.	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+

Native Stacking for X460-G2 Switches

X460-G2 1-gigabit switch models (GE4) support native stacking through an attached VIM-2ss or VIM-2q module.

The VIM-2ss module permits stacking using the standard SummitStack cables. With this module it is possible to stack with X 460 and X 480 switches.

Figure 201: VIM-2ss SummitStack Module

1 = LEDs	$2=$ Stacking ports

The VIM-2q module connects to QSFP+ cables to form stacks using the SummitStack-V160 protocol. This module is not compatible with the SummitStack-V80 module that is used on the X460 and X480 switches.

Figure 202: VIM-2q Port Option Card

1 = LEDs	$2=$ QSFP+ ports

Note
VIMs are not hot swappable. You must power down the switch before installing any VIMs.

Alternate Stacking for X460-G2 Switches

X460-G2 10-gigabit switch models (10GE4) support alternate stacking (SummitStack-V feature) through the 10G SFP+ ports located on the front panel. See Summit X460-G2 (10G Models) Stack Configuration Guidelines on page 224 for additional considerations.

X460-G2 1-gigabit switch models (GE4) support alternate stacking through an attached VIM-2t or VIM-2x module. See Summit X460-G2 (1G Models Using VIM Ports) Stack Configuration Guidelines on page 225 for additional considerations.

Note
40G ports on the VIM-2q cannot be partitioned into four 10G ports.

Table 100 summarizes alternate stacking support for $\mathrm{X} 460-\mathrm{G} 2$ switches.

When the stacking-support option is enabled (with the enable stacking-support command), data communication stops on the physical data ports that are designated for alternate stacking. Then, when stacking is enabled (with the enable stacking command), those ports - listed in the Alternate Stacking Ports column of Table 100 - operate using the stacking protocol for the logical stacking ports.

Table 100: Alternate Stacking Ports for X460-G2 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X460-G2-24t-GE4 X460-G2-24p-GE4	VIM-2ss or VIM-2q	33,34	VIM-2t or VIM-2x
X460-G2-48t-GE4 X460-G2-48p-GE4	VIM-2ss or VIM-2q	53,54	VIM-2t or VIM-2x
X460-G2-24t-10GE4 X460-G2-24x-10GE4 X460-G2-24p-10GE4	VIM-2ss or VIM-2q	31,32	Front panel
X460-G2-48t-10GE4 X460-G2-48x-10GE4 X460-G2-48p-10GE4	VIM-2ss or VIM-2q	51,52	Front panel

Note

- On X460-G2 24-port 10GE4 switches, ports 31 and 32 are not available as data ports when the alternate stacking ports are used.
- On X460-G2 48-port 10GE4 switches, ports 51 and 52 are not available as data ports when the alternate stacking ports are used.

Additional Stacking Considerations for X460-G2 Switches

When planning to use $\mathrm{X} 460-\mathrm{G} 2$ switches in a stack, note the following additional considerations:

- When using the VIM-2ss module, you can enable stacking without enabling stacking-support because the ports are native to the switch. All other VIMs require stacking-support to be enabled.
- The X460-G2 switch has "protocol enhanced" set by default. (Older switches, such as the X460, have "protocol standard" set by default. When you add a switch to a stack, make sure the new switch has "protocol enhanced" set so that it can communicate with the X460-G2 switch and the other switches in the stack.)
- Because the X460-G2 switch must run with ExtremeXOS version 15.7 or later, it cannot be stacked with older switch series like the X250 and X450e. Those switch series are not compatible with the ExtremeXOS levels that are required for X460-G2 switches.
- See also Summit X460-G2 (10G Models) Stack Configuration Guidelines on page 224.
- See also Summit X460-G2 (1G Models Using VIM Ports) Stack Configuration Guidelines on page 225.

Summit X460-G2 (10G Models) Stack Configuration Guidelines

Before deploying a new stack with Summit X460-G2 10-gigabit switch models (10GE4), consider the following guidelines:

- In a stack that contains X460-G2 switches and other switch models, the X460-G2 switch might provide more memory and more features than the other switch models. Take this into account when
you decide which switches will serve as the master and backup nodes, and when you configure failover operation.
- To use the failover feature in the stack, a second Summit X460-G2 switch is recommended. It must be the backup node.
- X460-G2 (10GE4) switches support SummitStack-V stacking on front panel 10G SFP+ ports, as well as native stacking through an attached VIM-2q or VIM-2ss module.
- Only the master and master-capable nodes require a license to support special features such as MPLS.
- If the MPLS feature pack is installed on the master-capable nodes, the following guidelines apply:
- Every switch in the stack must meet the software and hardware requirements listed in the Feature License Requirements document.
- Only the enhanced stacking protocol is supported for the X460-G2 switch. Every node that shares a stack with an X460-G2 switch must have enhanced stacking configured.
- We recommend against mixing X450-G2, X460-G2, X670-G2, and X770 switches in a stack.
- Summit X460-G2 switches support multiple types of QSFP+ stacking cables for connection between VIM-2q ports and QSFP+ ports on other Summit switches. For information on which cables to use with each type of Summit family switch, see Selecting Stacking Cables on page 235.
- The last two front panel 10G ports are used for alternate stacking (SummitStack-V feature).
- VIM-2a ports are used for SummitStack-V160G stacking.
- VIM-2t and VIM-2x ports are not used for stacking. These ports are used for user data.
- A VIM-2q module attached to an X460-G2 switch supports LR4 PSM in 40G mode.
- The X460-G2 switch supports the LR4 Parallel Single Mode (PSM) optical transceiver on 40G optical QSFP+ ports.

Summit X460-G2 (1G Models Using VIM Ports) Stack Configuration Guidelines

Before deploying a new stack with Summit X460-G2 1-gigabit switch models (GE4), consider the following guidelines:

- SummitStack-V stacking is supported through an attached VIM: VIM-2t, VIM-2x, VIM-2q, or VIM-2ss.
- UTP cables must be used when VIM-2t ports are used as stacking ports.
- We recommend against mixing X450-G2, X460-G2, X670-G2, and X770 switches in a stack if the desired routing table exceeds the supported limit.
- Support is available on ExtremeXOS version 16.1 or later.

Summit $\times 480$ Stacking

The stacking-support option is enabled by default for X 480 switches except in the case of $\mathrm{X} 480-24 \mathrm{x}$ switches with a VIM2-SummitStack, VIM2-SummitStack128, or VIM2-SummitStack-V80 module installed. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X480-24x switches with a VIM2-SummitStack, VIM2-SummitStack128, or VIM2-SummitStack-V80 module installed. For other X 480 switch configurations, the option is disabled. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 101: Stacking Methods for X480 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack (with VIM2-SummitStack) See Native Stacking for X480 Switches on page 226.	10 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}, 5.0 \mathrm{~m}$ 20 Gb Stacking Cable
SummitStack-V (with VIM2-10G4X) See Alternate Stacking for X480 Switches on page 226.	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ XFP
SummitStack-V80 (with VIM2-SSV80 and VIM3-40G4X)	20 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V160 (with VIM3-40G4X)	40 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V320 (with VIM3-40G4X)	80 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack128 (With VIM2-SS128) 5	32 Gbps	$0.5 \mathrm{~m}, 1.5 \mathrm{~m}, 3.0 \mathrm{~m}$

Native Stacking for X480 Switches

For Summit X480 native stacking, install VIM2 or VIM3 versatile interface module (VIM) into the rear of the switch. See Versatile Interface Modules for the Summit X480 Series Switches on page 170 for more information about the VIMs supported.

The VIM3-40G4X module can be used for native stacking with a Extreme Networks certified 40G QSFP + cable. Other SummitStack ports require standard SummitStack cables.

For a complete listing of compatible cables and optical transceivers, see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

Note
Stack Port 1 is port S3 and Stack Port 2 is port S4 on the VIM3-40G4X.

Alternate Stacking for X480 Switches

Summit X480-48t and X480-48x switches do not have 10-Gbps ports on the base model switch. To use the SummitStack-V feature on these switches, you must install a VIM2-10G4X module - after which ports S3 (51) and S4 (52) can be configured as alternate stacking ports. Alternate stacking ports are not supported with the VIM3-40G4X.

On an X480-24x switch with an installed VIM2-10G4X module, you can configure ports S3 (29) and S4 (30) as alternate stacking ports for the SummitStack-V feature. If you use a VIM3-40G4X module for stacking, ports 25 and 26 are configured as the alternate stacking ports.

On an X480-24x switch with installed native stacking ports on a VIM2 module, you can do either of the following:

5 VIM2-SS128 is a module that can stack with other X480 switches using VIM2-SS128. It can also stack using SS256 with a conversion cable.

- Configure both ports 25 and 26 on the switch front panel as alternate stacking ports.
- Configure one alternate stacking port on the switch front panel and use a native stacking port on the installed VIM2 module.

On an X480-24x switch with no installed VIM2 module, you can configure ports 25 and 26 on the switch front panel as alternate stacking ports.

Table 102 summarizes alternate stacking support for X 480 switches.

Table 102: Alternate Stacking Ports for X480 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X480-24x None: VIM has only data portsS3,S4 $(29,30)$	VIM2-10G4X module		
	None: No installed VIM	25,26	Front panel
	VIM2-SummitStack module VIM2-SummitStack128 module VIM2-SummitStack-V80 module VIM3-40G4X	25,26	Front panel
	None: VIM has only data ports	S3,S4 $(51,52)$	VIM2-10G4X module

Summit X650 Stacking

For Summit X650 native stacking, install VIM1 or VIM3 versatile interface module (VIM) into the rear of the switch. Link speeds and cable types vary depending on which VIM you selected. See Versatile Interface Modules for the Summit $X 650$ Series Switches on page 173 for more information about the VIMs supported.

Table 103: Stacking Methods for X650 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack (with VIM1 module)	varies	varies
SummitStack (with VIM3-40G4X)	40 Gbps	$0.5 m-100 \mathrm{~m}$ QSFP+ only

The VIM1-SummitStack256/512 modules require a non-standard stacking cable.
Other SummitStack ports require standard SummitStack cables.
For a complete listing of compatible cables and optical transceivers, see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

Note
When using native stacking on an X 650 switch, data ports 23 and 24 do not function.

Summit $\times 670$ Stacking

Both X670-48x switches and X670V switches can participate in alternate stacking configurations using SummitStack-V.

Native stacking is possible only for X670V switches.

The stacking-support option is enabled by default for all X670-48x and X670V switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X670-48x and X670V switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 104: Stacking Methods for X670-48x Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack-V (front panel)	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+
SummitStack-V160	40 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V320	80 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only

Table 105: Stacking Methods for X670V Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack-V (front panel)	10 Gbps	$0.5 \mathrm{~m}-40 \mathrm{~km}$ SFP+
SummitStack-V80 (with VIM3-40G4X)	20 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V160 (with VIM4-40G4X)	40 Gbps	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only
SummitStack-V320 (with VIM4-40G4X)	80 Gbps 6	$0.5 \mathrm{~m}-100 \mathrm{~m}$ QSFP+ only

Native Stacking for X670V Switches

For X670V native stacking, install a VIM4-40G4X module into the rear of the switch. Use any Extreme Networks certified 40G QSFP+ cable or optical transceiver to make the connections among the switches to be stacked.

In SummitStack-V160 mode:

- Port S3 on the VIM4-40G4X module serves as stack port 1. The ExtremeXOS operating system displays this port as port 49.
- Port S4 on the VIM4-40G4X module serves as stack port 2. The ExtremeXOS operating system displays this port as port 53.

In SummitStack-V320 mode:

6 Combined over paired ports

- Ports S1 and S3 on the VIM4-40G4X module serve collectively as stack port 1. The ExtremeXOS operating system displays these ports as ports 49 and 57.
- Ports S2 and S4 on the VIM4-40G4X module serve collectively as stack port 2. The ExtremeXOS operating system displays these ports as port 53 and 61.

Figure 203: VIM4-40G4X Port Option Card for X670V Switch

1 = QSFP+ ports (S3 and S4 are used for stacking)	$2=$ Port LEDs

If ports 47 and 48 on an X670V switch are used as alternate stacking ports, ports 45 and 46 are not available to use as data ports.

For a complete listing of compatible cables and optical transceivers, see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

To join an $\mathrm{X} 670-48 \mathrm{x}$ switch to an X 460 switch in a stack, use SummitStack-V80 stacking.
To join an X670-48x switch to an X460-G2 switch in a stack, use SummitStack-V160 stacking.

Alternate Stacking for X670-48x and X670V Switches

Table 106 summarizes alternate stacking support for X670-48x and X670V switches.

Table 106: Alternate Stacking Ports for X670 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X670-48x	None	47,48	Front panel
X670V-48t X670V-48x	VIM4-40G4X	47,48	Front panel

Note

- Ports 45 and 46 are not available as data ports when the alternate stacking ports are used.
- On X670V-48t switches, alternate stacking ports are fiber medium only.

Summit X670-G2 Stacking

The stacking-support option is enabled by default for X670-G2 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X670-G2 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 107: Stacking Methods for X670-G2 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack-V all X670-G2 switch models	10 Gbps	SFP+ to SFP+
SummitStack-V80 model 48x-4q only	20 Gbps	QSFP+ to QSFP+
SummitStack-V160 model 48x-4q only	40 Gbps	QSFP+ to QSFP+
SummitStack-V320 model 48x-4q only	$80 \mathrm{Gbps}^{7}$	QSFP+ to QSFP+

Native Stacking for X670-G2 Switches

For X670-G2 native stacking, use the 4×40 Gb interfaces that are fixed on the front of the switch. Use any Extreme Networks certified 40G QSFP+ cable or optical transceiver to make the connections among the switches to be stacked.

For a complete listing of compatible cables and optical transceivers,see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

X670-G2-48x-4q switches support native stacking using SummitStack-V80, V160, and V320

- For SummitStack-V80 stacking, use ports 57 and 61.
- For SummitStack-V160 stacking, use ports 57 and 61.
- For SummitStack-V320 stacking, use ports 49, 53, 57, and 61.

X670-G2-72x switches support do not support native stacking.

Alternate Stacking for X670-G2 Switches

Table 108 summarizes alternate stacking support for X670-G2 switches.

Table 108: Alternate Stacking Ports for X670-G2 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
X670-G2-48x-4q	Ports 49,53,57,61	47,48	Front panel
X670-G2-72x	None	71,72	Front panel

Note

- On X670-G2-48x-4q switches, ports 45 and 46 are not available as data ports when the alternate stacking ports are used.
- On X670-G2-72x switches, ports 71 and 72 are not available as data ports when the alternate stacking ports are used.

7 Combined over paired ports

Additional Stacking Considerations for X670-G2 Switches

Before deploying a new stack with Summit X670-G2 switches, consider the following guidelines:

- In a stack that contains X670-G2 switches and other switch models, the X670-G2 switch might provide more memory and more features than the other switch models. Take this into account when you decide which switches will serve as the master and backup nodes, and when you configure failover operation.
- To use the failover feature in the stack, a second X670-G2 switch is recommended. It must be the backup node.
- Only the master and master-capable nodes require a license to support special features such as MPLS.
- If the MPLS feature pack is installed on the master-capable nodes, the following guidelines apply:
- Every switch in the stack must meet the software and hardware requirements listed in the Feature License Requirements document.
- Every node that shares a stack with an X450-G2 switch must have enhanced stacking configured.
- We recommend against mixing X450-G2, X460-G2, X670-G2, and X770 switches in a stack.
- The X670-G2-48x-4q switch supports the LR4 Parallel Single Mode (PSM) optical transceiver on 40G optical QSFP+ ports.

Summit $\times 770$ Stacking

The stacking-support option is enabled by default for X770 switches. For more information, see Enabling and Disabling the Stacking-Support Option on page 214.

The stacking port selection option, which allows you to choose between native and alternate ports, is enabled by default for X770 switches. For more information, see Selecting Native and Alternate Stacking Ports on page 232.

Table 109: Stacking Methods for X770 Switches

Stacking Method	Speed per Link (HDX)	Cable Type and Lengths
SummitStack-V (ports 103 and 104)	10 Gbps	1 lm and 2 m QSFP+ 4xSFP+ fan-out cable
SummitStack-V160 (ports 103 and 104)	40 Gbps	$0.5 \mathrm{~m}, 1 \mathrm{~m}$, and 3m (26 AWG) QSFP+
SummitStack-V320 (ports 101 and 103, and 102 and 104)	80 Gbps (combined over paired ports)	$0.5 \mathrm{~m}, 1 \mathrm{~m}$, and 3m (26 AWG) QSFP+

Native Stacking for X770 Switches

The X770 supports SummitStack-V80, V160, and V320 stacking. Use any Extreme Networks certified 40G QSFP+ cable or optical transceiver to make the connections among the switches to be stacked.

For X770 native stacking, use the fixed 40G QSFP+ ports numbered 101, 102, 103, and 104 (shown in Figure 204).

Figure 204: Location of Stacking Ports (101 through 104) on an X770 Switch
For a complete listing of compatible cables and optical transceivers, see the Extreme Hardware/ Software Compatibility and Recommendation Matrices.

Alternate Stacking for X770 Switches

Table 110 summarizes alternate stacking support for X 770 switches.

Table 110: Alternate Stacking Ports for X770 Switches

Switch Model	Type or location of Native Stacking Ports	Alternate Stacking Ports	Location of Alternate Stacking Ports
$X 770-32 \mathrm{q}$	Ports 101,102,103,104	103,104	Front panel

Note
Ports 103 and 104 are not available as data ports when the alternate stacking ports are used. Ports 101 and 102 remain available to use as data ports.

Additional Stacking Considerations for X770 Switches

Before deploying a new stack with Summit X 770 switches, consider the following guidelines:

- To use the failover feature in the stack, a second Summit X770 switch is recommended. It must be the backup node.
- Only the master and master-capable nodes require a license to support special features such as MPLS.
- If the MPLS feature pack is installed on the master-capable nodes, the following guidelines apply:
- Enhanced stacking must be configured on each switch in the stack.
- We recommend against mixing X450-G2, X460-G2, X670-G2, and X770 switches in a stack if the desired routing table exceeds the supported limit. For the X770 switch, the limit is 98 K IPv4 LPM routes.
- X770 switches support multiple types of QSFP+ stacking cables for connection between ports 101-104 and other Summit switches. For information on which cables to use with each type of switch, see Selecting Stacking Cables on page 235.

Selecting Native and Alternate Stacking Ports

On switches that provide both native stacking ports and alternate stacking ports (described in Stacking Considerations for Each Switch Model on page 216), you can configure each logical stacking port to use either the native stacking port or the alternate stacking port. You can configure logical stacking ports to use any of the following physical stacking port configurations:

- Two native stacking ports
- Two alternate stacking ports
- One native stacking port and one alternate stacking port

When the Stacking Port Selection Control option is enabled in a switch's configuration, you can choose between native and alternate stacking ports. The default selection is the native stacking ports.

- To select between the native and alternate stacking ports, use the following command for each switch in the stack:

```
configure stacking-support stack-port [stack-ports | all] selection
[native {V80 | V160 |V320 | V400} | alternate]
```


Note

Not all options are available for all switches. Refer to Stacking Considerations for Each Switch Model on page 216 for details.

- To display the stacking and stacking-support configuration, use the following commands:

```
show stacking-support
show stacking stack-ports
show stacking {node-address node_address | slot slot_number} detail
```

- To unconfigure the stacking-support feature, use the following command:

```
unconfigure stacking-support
```


Note

Commands that contain the stacking-support keyword apply to the local switch only. This means that each switch that will use alternate stacking ports must be configured separately. When the stack is fully active, you can use the telnet slot slot-number command to log in to another node over the stack to unconfigure SummitStack-V on that node only. There is no way to intentionally or accidentally unconfigure the stackingsupport options on all nodes in a stack.

- When the stacking-support feature has been configured as required on all nodes in a stack, reboot each node.
- Run the show stacking stack-ports command to verify that the stack has been properly connected.

Combining Switches from Different Series

Summit switches can be stacked in the combinations listed in Table 111 on page 234. For each combination, one or more of the following stacking methods are displayed:

40G 40G mode
128G 128G mode (X480-24x switches with VIM2-SummitStack128)
SS SummitStack
V SummitStack-V
V80 SummitStack-V80
V84 SummitStack-V84 (X450-G2 switches)

Table 111: Matrix of Switches and Stacking Methods

Stack with	X440 ${ }^{1}$	$\left.\begin{gathered} X 440-10 \\ G \end{gathered} \right\rvert\,$	$\begin{gathered} \mathrm{X} 450- \\ \mathrm{G} 2^{3} \end{gathered}$	X460	$\begin{gathered} \mathrm{X} 460- \\ \mathrm{G} 2^{2} \end{gathered}$	X480	X670	X670V	$\begin{gathered} \text { X670- } \\ \text { G2 } \end{gathered}$	X770
X440 ${ }^{1}$	40G	-	-	40G	40G	40G	-	-	-	-
$\begin{aligned} & \text { X440-10 } \\ & G \end{aligned}$	-	V	V	V	V	V	V	V	V	V
$\begin{aligned} & \text { X450- } \\ & \text { G23 } \end{aligned}$	-	V	$\begin{gathered} \text { V } \\ \text { V84 } \end{gathered}$	V	V	V	V	V	V	V
X460	40G	V	V	$\begin{gathered} \hline 40 \mathrm{G} \\ \mathrm{~V} \\ \mathrm{~V} 80 \end{gathered}$	$\begin{gathered} 40 G \\ V \end{gathered}$	$\begin{gathered} \hline 40 \mathrm{G} \\ \mathrm{~V} \\ \mathrm{~V} 80 \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V80 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \end{gathered}$	V
$\begin{aligned} & \text { X460- } \\ & G 2^{2} \end{aligned}$	40G	V	V	$\begin{gathered} 40 \mathrm{G} \\ \mathrm{~V} \end{gathered}$	$\begin{gathered} 40 G \\ S S \\ V \\ \text { V160 } \end{gathered}$	$\begin{gathered} \hline 40 \mathrm{G} \\ \mathrm{~V} \\ \mathrm{~V} 160 \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V160 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V160 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V160 } \end{gathered}$
X480	40G	V	V	$\begin{gathered} 40 \mathrm{G} \\ \mathrm{~V} \\ \mathrm{~V} 80 \end{gathered}$	$\begin{gathered} \hline 40 \mathrm{G} \\ \mathrm{~V} \\ \mathrm{~V} 160 \end{gathered}$	$\begin{gathered} \hline 40 \mathrm{G} \\ 128 \mathrm{G} \\ \mathrm{~V} \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \hline \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$
X670	-	V	V	V	V	V	V	V	V	V
X670V	-	V	V	$\begin{gathered} \text { V } \\ \text { V80 } \end{gathered}$	$\begin{gathered} \hline V \\ V 160 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$
$\begin{aligned} & \text { X670- } \\ & \text { G24 } \end{aligned}$	-	V	V	$\begin{gathered} \text { V } \\ \text { V80 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V160 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V80 } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$
X770	-	V	V	V	$\begin{gathered} \text { V } \\ \text { V160 } \end{gathered}$	$\begin{gathered} \hline \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	V	$\begin{gathered} \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \hline \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$	$\begin{gathered} \hline \text { V } \\ \text { V160 } \\ \text { V320 } \end{gathered}$

Notes:
1 X440-L2 models cannot be stacked.
2 X460-G2 SummitStack-V is available only on 10G models.
3 X450-G2 SummitStack-V is available only on 10G models. SummitStack-V84 is available only in stacks of Summit X450-G2 switches running the same version of ExtremeXOS.
4 X670-G2-72x can stack only with SummitStack V using front panel $10 G$ ports.

In a stack that has switch models from more than one Summit series, refer to the list in Master/Backup Switch Redundancy on page 204 and follow these guidelines:

- The stack master and backup nodes should be from the same switch series. For example, if a Summit X480 series switch is the stack master, the backup node should also be a Summit X480 series switch.
- Follow these guidelines for the specific listed switch combinations:
- If Summit X480 series and X650 switches are both present in the stack, the master and backup nodes should both be X 480 switches.
- If Summit X480 switches and X670 switches are both present in the stack, the master and backup nodes should both be X670 switches.
- Although you can combine Summit X460, X480, and X670 switches in a stack, you should be aware that the routing table limit for the Summit X 460 series is lower than the limits for the other two switch series. For more information, refer to the ExtremeXOS 16.2 User Guide.

Stack configuration, easy setup, and redundancy are fully described in the ExtremeXOS 16.2 User Guide.

Selecting Stacking Cables

Depending on the switch model and the number and type of stacking ports, the bidirectional stacking link provides 40 Gbps, 80 Gbps, 128 Gbps, 160 Gbps, 256 Gbps, or 512 Gbps full-duplex bandwidth.

Stacking connections using the native stacking ports require stacking cables that are specific to the type of stacking port. These cables are available from Extreme Networks in lengths from 0.5 meter to 100 meters.

Table 112 lists the cable types that have been verified by Extreme Networks for use as stack connection hardware, along with the Summit switches or modules with which each type is compatible.

Caution

Use of non-recommended cables or optics could cause stack instability.

Table 112: Available Stacking Cables for Summit Switches

Part Number	Cable Type, Length	Compatible Ports and Devices
16105	SummitStack, 5 meter	20-Gbps stacking ports on VIM-2ss on X460-G2 series switches 20-Gbps fixed stacking ports on Summit X250e, X440 (except 10G models) X450, X450a, X450e, and X460 (with stacking module) series switches, 20-Gbps stacking ports on VIM-2ss on X460-G2 series switches, 20-Gbps stacking ports on VIM1-SummitStack or VIM1-10G8X modules in Summit X650 series switches, 20-Gbps stacking ports on VIM2-SummitStack modules in Summit X480 series switches
16106	SummitStack, 0.5 meter	SummitStack, 1.5 meter
16107	SummitStack, 3 meter	128-Gbps ports on VIM1-SummitStack256 or VIM1- SummitStack512 modules in Summit X650 series switches
16108	SummitStack 128G, 0.5 meter	SummitStack 128G, 1.0 meter
17021	SummitStack 128G, 3.0 meter	128-Gbps ports on VIM1-SummitStack256 modules in Summit X650 series switches and 64-Gbps ports on VIM2- SummitStack128 modules in Summit X480 series switches
17022	SummitStack 128G/64G, 1.0 meter	
17023		

Table 112: Available Stacking Cables for Summit Switches (continued)

Part Number	Cable Type, Length	Compatible Ports and Devices
17030	SummitStack 64G, 1.0 meter	64-Gbps ports on VIM2-SummitStack128 modules in Summit X480 series switches
17034	SummitStack 128G/20G, 1.0 meter	128-Gbps ports on VIM1-SummitStack256 modules in Summit X650 series switches and 20-Gbps fixed stacking ports on Summit X250e, X450, X450a, X450e series switches, 20-Gbps stacking ports on VIM1-SummitStack or VIM1-10G8X modules in Summit X650 series switches, 20-Gbps stacking ports on VIM2- SummitStack modules in Summit X480 series switches
17038	SummitStack 64G/20G, 1.0 meter	64-Gbps ports on VIM2-SummitStack128 modules in Summit X480 series switches and
103 20-Gbps fixed stacking ports on Summit X250e, X450,		
X450a, X450e series switches, 20-Gbps stacking ports on		
VIM1-SummitStack or VIM1-10G8X modules in Summit		
X650 series switches, 20-Gbps stacking ports on VIM2-		
SummitStack modules in Summit X480 series switches		

Table 112: Available Stacking Cables for Summit Switches (continued)

Part Number	Cable Type, Length	Compatible Ports and Devices
10323	QSFP+ direct-attach passive copper cable, 5 meters	21-Gbps stacking ports on Summit X450-G2 switches, 40Gbps stacking ports on VIM2-SummitStack-V80 modules in Summit X480 and X650 series switches, 80-Gbps stacking ports on VIM4-40G4X modules in Summit X670V series switches
10336	QSFP+ active optical cable, 3 meters	40-Gbps ports on Summit X670-G2 and X770 switches; 40-Gbps VIM ports on Summit X460, X460-G2, X480, and X670V switches
10337	QSFP+ active optical cable, 5 meters	

Note

For the most recent information about available cables, contact your Extreme Networks sales representative or refer to Extreme Hardware/Software Compatibility and Recommendation Matrices.

Using the Extreme Stacking Tool

The Extreme Stacking Tool provides an easy way to plan your stack. As you select various switch models and stacking methods, the tool shows you:

- What switch models can be stacked together and which cannot
- Whether switching methods - for example SummitStack-V and SummitStack-V80 are compatible with the selected switches
- Statistics showing the routing options that are available with every stack combination
- Recommendations about which switches should be the stack master and backup
- Information about the supported versions of ExtremeXOS for every combination

To use the Stacking Tool, follow these steps.
1 Open the Stacking Tool (https://stackingtool.extremenetworks.com) in a web browser.
Note
The Stacking Tool is also available in the Support Tools section of the Extreme Portal.

2 Find a switch model in the Switches column.
Each switch model is represented by a rectangle, as shown in the example in Figure 205. In this example, stacking ports are represented by S1 and S2 on the right side.

Figure 205: X670-G2 Switch Shown in the Stacking Tool
Tip
Click a rectangle to display more information about the switch model and the VIMs (if any)
that it can use for stacking.

3 Drag the rectangle to the first slot in the Stack column in the middle of the page.
To the right of the Stack column, the tool displays statistics about available routes, supported software versions, and master/backup recommendations.
Tip
If you don't see statistics and other information, click the arrow (> symbol) to the
immediate right of the Stack column.

4 Use the tool in any of the following ways:

- Select other switches and drag them to the slots in the stacking column.
- For any switch in the stack, click the S1 and S2 symbols to choose stacking methods - for example, SummitStack-V and SummitStack-V80.
- To remove a switch from the stack, drag it away from the stacking column.

Whenever you add or remove a switch from the stack, the statistics and recommendations update automatically.

In addition to statistics and recommendations, colors in the display show whether the selected switch models and stacking methods are compatible.

Table 113: Colors in the Stacking Tool Display

Color	Meaning
Green	Compatible and preferred
Blue	Compatible
Yellow	Incompatible with the selected master node
Red	Incompatible

Setting up the Physical Stack

After you have installed the individual switches (see Installing Summit Switches on page 263), follow these steps to create the physical stack.

1 Connect the switches that will form the stack.
See Connecting the Switches to Form the Stack Ring on page 239.
2 Connect stacking cables to the switches.
See Connecting Stacking Cables on page 250.
3 Connect the switches to your management network.
See Connecting Your Stack to the Management Network on page 262.
After setting up and connecting the switches, perform software configuration for the stack. See "Configuring a New Stack" in the ExtremeXOS 16.2 User Guide.

Connecting the Switches to Form the Stack Ring

After you have installed the individual switches, connect them together using the stacking cables.

The examples in this section show cable connections and the recommended order for connecting ports to facilitate the easy setup configuration.

In general, it is best to connect Stack Port 2 on one switch to Stack Port 1 on the switch with the next higher slot number. Although you can connect the switches in any order, connecting them as shown in these examples will produce better predictability and easier software configuration.

It is essential to create an unbroken data path through all the switches in the stack.

Note

The connection recommendations in this section do not apply to Summit X650 series switches with installed VIM1-SummitStack512 modules. For information about connecting the ports on the VIM1-SummitStack512 modules, see Using the VIM1-SummitStack512 Module on page 245 .

For instructions to connect specific types of stacking cables, see Connecting Stacking Cables on page 250.

Combining Different Types of Stacking Ports

Figure 206 shows a sample configuration using the following switches:

- Summit X650 series switches with installed VIM1-SummitStack256 modules
- Summit X450a series switch with integrated SummitStack ports
- Summit X480 series switch with installed VIM2-SummitStack module

Figure 206: Combining Stacking Port Types: Example 1

The following cables are used to make the stacking connections:

- SummitStack 128G cable between the two Summit X650 series switches at the top (slot 1 and slot 2)
- SummitStack 128G/20G stacking cable between the Summit X650 series switch and the Summit X480 series switch (between slot 2 and slot 3)
- SummitStack 20G stacking cable between the Summit X480 series switch and the Summit X450a series switch (between slot 3 and slot 4)
- SummitStack 128G/20G stacking cable between the Summit X450a series switch and the Summit X650 series switch (between slot 4 and slot 1)

Table 114 lists the recommended order for connecting the stacking ports in this example.

Table 114: Combining Stacking Port Types (Example 1): Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 1	Stack Port 1

Figure 207 shows a similar stack configuration using the following switches:

- Summit X650 series switches with installed VIM1-SummitStack256 modules
- Summit X460 series switches with installed SummitStack stacking modules
- Summit X450a series switch with integrated stacking ports

Figure 207: Combining Stacking Port Types: Example 2

The following cables are used to make the stacking connections:

- SummitStack 128G cable between the two Summit X650 series switches at the top (slot 1 and slot 2)
- SummitStack 128G/20G stacking cable between the Summit X650 series switch and the Summit X460 series switch (between slot 2 and slot 3)
- SummitStack 20G stacking cable between the two Summit X460 series switches (between slot 3 and slot 4)
- SummitStack 20G stacking cable between the Summit X460 series switch and the Summit X450a series switch (between slot 4 and slot 5)
- SummitStack 128G/20G stacking cable between the Summit X450a series switch and the Summit X650 series switch (between slot 5 and slot 1)

Table 115 lists the recommended order for connecting the stacking ports in this example.

Table 115: Combining Stacking Port Types (Example 2): Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 5	Stack Port 1
Slot 5	Stack Port 2	Slot 1	Stack Port 1

Using the SummitStack-V80 Stacking Module or VIM2-SummitStack-V80 Module

The SummitStack-V80 stacking module and VIM2-SummitStack-V80 module allow you to use active or passive direct-attach QSFP+ cables to connect stack members across rows in a data center.

In Figure 208, passive copper cables are used to connect adjacent switches in the same rack, and the active fiber cables provide connections up to 100 meters long between racks. The illustration shows Summit X 460 series switches; Summit X 480 series switches could be used in the same way.

Figure 208: Using the SummitStack-V80 Stacking Module or VIM2-SummitStack-V80 Module

Using SummitStack-V160 Stacking

A stacking rate of 160 Gbps can be achieved using certain configurations of Summit switches. For example, an X460-G2 switch can be connected to an X670-G2-48x-4q switch through 40-Gbps stacking connections that provide 160 Gbps full-duplex bandwidth. This connection is performed using the VIM4-2q module in the X460-G2 switch and the QSFP+ ports on the X670-G2-48x-4q switch. V-160 stacking is also supported on the $X 480$ series switch using the VIM3-40G4x module, and on the $X 770$ switch using the QSFP+ ports.

On the VIM4-40G4X module, ports S3 and S4 are the stacking ports.
Figure 209 shows an example stack using Summit $\mathrm{X} 670, \mathrm{X} 650, \mathrm{X} 480$, and $X 460$ series switches.

Figure 209: SummitStack-V160 Configuration
Table 116 lists the recommended order for connecting the stacking ports in this example.

Table 116: Using the SummitStack-V160 Stacking: Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 5	Stack Port 1
Slot 5	Stack Port 2	Slot 1	Stack Port 1

To connect a VIM3-40G4X or VIM4-40G4X stacking port to a stacking port on a VIM2-SummitStackV80 or SummitStack-V80 module, you must set the VIM3 or VIM4 port to operate at the slower speed of the SummitStack-V80 port. To do so, use the configure stacking-support stack-ports selection command. For more information about configuring stacking ports, see the ExtremeXOS 16.2 User Guide.

For SummitStack V-160 on the Summit X770, ports 103 and 104 are the stacking ports.

Using SummitStack-V320 Stacking

A stacking rate of 320 Gbps can be achieved across a stack of X480 (with VIM3-40G4X), X650 (with VIM3-40G4X), X670V (with VIM4-40G4X), and X770 switches using the QSFP+ connection and cables. These switches can use 80-Gbps stacking connections that provide 320 Gbps full-duplex bandwidth.

The following figure shows an example of a SummitStack-V320 stack using Summit X670 and X650 series switches.

Figure 210: Example SummitStack-V320 Configuration
Slot 1: Summit X670V-48x switch with VIM4-40G4X
Slot 2: Summit X670V-48x switch with VIM4-40G4X
Slot 3: Summit X650 series switch with VIM3-40G4X

SummitStack V-320 stacking can be done with installable modules or using front panel ports, depending upon the type of switch you have. For SummitStack V-320 Stacking using the VIM3-40G4X and VIM4-40G4X modules, connections between the stacking ports must be done using paired bundles of physical ports. V320 stacking will not function unless the physical ports on the modules are paired to form stacking ports. Table 117 lists the port pairings using installable modules.

Table 117: Port Pairings Using Installable Modules

VIM3-40G4X		VIM4-40G4X	
Paired physical ports	Stacking port	Paired physical ports	Stacking port
S1 and S3	S1	S1 and S3	S1
S2 and S4	S2	S2 and S4	S2

Table 118 lists the recommended order for connecting the stacking ports in the example stack shown in Figure 210 on page 244.

Table 118: Recommended Order for Connecting Stacking Ports

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2 (physical ports 2 and 4)	Stat 2 (physical ports 1and 3)	
Slot 2	Stack Port 2 (physical ports 2 and 4)	Slot 3	Stack Port 1 (physical ports 1 and 3)
Slot 3	Stack Port 2 (physical ports 2 and 4)	Slot 1	Stack Port 1 (physical ports 1 and 3)

Note
SummitStack-V320 stacking can be mixed with V160, V80, and 10G alternate port stacking.
For example, a Summit X460 with SummitStack-V80 could be added to the sample stack in
Figure 210 on page 244 . However, you must restrict the speed of the ports on the
VIM3-40G4X and VIM4-40G4X that connect to any ports on nodes operating at slower
speeds. To reduce the speed of ports on the VIM3-40G4X or VIM4-40G4X, use the configure
stacking-support stack-ports selection command. For more information about configuring
stacking ports, see the ExtremeXOS 76.2 User Guide.

Table 119 lists the port pairings for SummitStack V-320 using the front panel ports on the Summit X770 switch.

Table 119: Physical Port Pairings for Front Panel Ports

	Summit X770-32q
Paired physical ports	Stacking port
101 and 103	S 1
102 and 104	S 2

Using the VIM1-SummitStack512 Module

The VIM1-SummitStack512 versatile interface module allows you to connect two Summit X650 series switches in a cross-over or back-to-back configuration, using SummitStack 128G cables.

This configuration provides two bidirectional links operating at 256 Gbps between the two switches.

Figure 211: Stacking Connections Using VIM1-SummitStack512 Modules and SummitStack 128G Cables

Unlike other stacking configurations, with the VIM1-SummitStack512 modules, ports are connected in pairs of matching port numbers. When you connect stacking cables to installed VIM1-SummitStack512 modules, match the stacking ports as listed in Table 120.

Table 120: Using the V1M1-SummitStack512 Module: Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 1	Slot 2	Stack Port 1
Slot 1	Stack Port 2	Slot 2	Stack Port 2
Slot 1	Stack Port 3	Slot 2	Stack Port 3
Slot 1	Stack Port 4	Slot 2	Stack Port 4

Examples of Valid Stacking Configurations

SummitStack ports are integrated into the rear panel of the Summit X250e, X440, X450, X450a, and X450e series switches.

The Summit X460-G2 accommodates the VIM-2ss SummitStack module, which provides SummitStack ports.

The X460, X480, and X650 also accommodate VIMs or stacking modules that provide SummitStack ports.

The examples in the following sections show various physical stacking arrangements: all switches in a single rack, switches in two adjacent racks, and switches at the tops of several racks in a row.

Example: Basic Stack with Four Switches

This example shows a stack of four switches in a single rack.
The slot numbers presume a console connection to the switch at the top of the physical stack.
Figure 212 shows cable connections for a 4-node stack using SummitStack 40G cables to connect switches with integrated SummitStack ports.

Figure 212: SummitStack Cable Connections Using Eight Switches with Integrated SummitStack Ports

Table 121 lists the recommended order for connecting the stacking ports in this example.

Table 121: Basic Stack with Four Switches: Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 1	Stack Port 1

Example: Basic Stack with Eight Switches

Figure 213 shows cable connections for an 8-node stack using SummitStack 40G cables to connect switches with integrated SummitStack ports.

Figure 213: SummitStack Cable Connections Using Eight Summit Switches with Integrated SummitStack Ports

Table 122 lists the recommended order for connecting the stacking ports in this example.

Table 122: Basic Stack with Eight Switches: Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 5	Stack Port 1
Slot 5	Stack Port 2	Slot 6	Stack Port 1
Slot 6	Stack Port 2	Slot 7	Stack Port 1

Table 122: Basic Stack with Eight Switches: Connections (continued)

Connect this slot and port ...		\ldots To this slot and port	
Slot 7	Stack Port 2	Slot 8	Stack Port 1
Slot 8	Stack Port 2	Slot 1	Stack Port 1

Example: Stack with VIM1-SummitStack Modules

Figure 214 shows an example of a four-switch stack that combines two different switch models: two of each model; four switches in all. For the first switch model, the stacking ports are on installed VIM1SummitStack modules. For the second switch model, the stacking ports are on installed SummitStack stacking modules. The recommended order for connecting the stacking ports is the same as for the example in Example: Basic Stack with Eight Switches on page 247.

Figure 214: SummitStack Configuration Using Different Switch Models and SummitStack 40G Cables

Example: Stacked X650 Switches with VIM1-SummitStack Modules

Figure 215 shows an example of a four-switch stack that includes two Summit X650 series switches. In the Summit X650 series switches. the SummitStack ports are on installed VIM1-SummitStack modules. The Summit X 650 series switches are placed at the top of the stack and will be designated the stack master and backup nodes. The recommended order for connecting the stacking ports is the same as for the example in Example: Basic Stack with Eight Switches on page 247.

Figure 215: SummitStack Configuration Using SummitStack X650 Series Switches and SummitStack 40G Cables

Example: Stacked Switches across Two Racks

The following example shows four switches - two of one model, two of another model - physically located in two adjacent racks.

In each rack, a Summit X 480 series switch is placed at the top, with a Summit X 650 series switch below it. The switches are connected into a stack using SummitStack ports on installed VIM2-SummitStack and VIM1-SummitStack modules. In this example, start by connecting the Summit X480 switches together; they will be designated the stack master and backup nodes (slot 1 and slot 2 , respectively).

Figure 216: SummitStack Connections Using Four Summit Switches with SummitStack Ports on VIMs

Table 123 lists the recommended order for connecting the stacking ports in this example.

Table 123: Stacked Switches across Two Racks: Connections

Connect this slot and port ...		\ldots To this slot and port	
Slot 1	Stack Port 2	Slot 2	Stack Port 1
Slot 2	Stack Port 2	Slot 3	Stack Port 1
Slot 3	Stack Port 2	Slot 4	Stack Port 1
Slot 4	Stack Port 2	Slot 1	Stack Port 1

Example: Stacked Switches across Several Racks

Figure 217 shows five switches installed at the tops of five adjacent racks. To accommodate the shortest possible cables, immediately adjacent switches are not always connected together. Port 2 on one switch is connected to Port 1 on the next connected switch. If the easy setup feature is used to configure the stack parameters, the assigned slot numbers will be as shown in the figure.

Figure 217: Top-of-Rack Stack Installation
Table 124 lists the recommended order for connecting the stacking ports in this example.

Table 124: Stacked Switches across Several Racks: Connections

Connect this slot and port ...			\ldots To this slot and port		
Slot 1	Rack A	Port 2	Slot 2	Rack B	Port 1
Slot 2	Rack B	Port 2	Slot 3	Rack D	Port 1
Slot 3	Rack D	Port 2	Slot 4	Rack E	Port 1
Slot 4	Rack E	Port 2	Slot 5	Rack C	Port 1
Slot 5	Rack C	Port 2	Slot 1	(Rack A	Port 1

Connecting Stacking Cables

To connect Summit switches in a SummitStack configuration, use the appropriate stacking cables for the specific stacking ports on the switches.

Connecting a SummitStack Cable to a Stacking Port

SummitStack cables are used to connect 20-Gbps SummitStack ports on the following switches:

- Summit X250e, X440, X450, X450a, and X450e series switches with integrated SummitStack ports
- Summit X480 series switches with installed VIM2-SummitStack modules
- Summit X650 switches with installed VIM1-SummitStack modules

To connect a SummitStack cable, follow these steps:
1 Align the cable connector with the stacking port connector on the rear of the first switch (see Figure 218).

2 Firmly press the cable connector into place on the mating stacking port connector.
3 Align and tighten the retaining screws on the cable connector.
4 Repeat steps 1 through 3 to connect the cable to the second switch.

Figure 218: Connecting a SummitStack Cable
Caution
Avoid making sharp bends in the cable. Sharp bends can stress the cable and cause damage.

Connecting a SummitStack 128G Cable

Because of the weight of the SummitStack 128G cable, Extreme Networks strongly recommends the use of cable management hardware to support the cables and provide strain relief at the connectors. The following figures show representative types of cable management hardware. Your particular rack configuration may require other cable management solutions.

Figure 219: Cable Management Using a J-Shaped Support Bracket

Figure 220: Cable Management Using Tie-Wraps and a Stand-Off

Port Covers on the VIM1-SummitStack512 Module

On the VIM1-SummitStack512 module, EMI-protective covers are installed over the port connectors.

Before connecting the stacking cables, remove the connector covers from the ports that will be used.
To remove a connector cover:
1 On the side of the connector nearest to the inserter/ejector lever, find the notch between the two end tabs on the cover (see Figure 221).
2 At the notch, set a small flat-blade screwdriver firmly against the connector housing.

Figure 221: Removing a Connector Cover
3 Brace the screwdriver against the module inserter/ejector lever and pry the end of the connector cover loose.
4 Slide the cover off the connector.

Note
Store the connector covers for later re-use if the switch will be operated without connecting these ports.

Caution

To ensure satisfactory protection from EMI, leave the covers on all ports that are not connected to another VIM1-SummitStack512 module.

Connect the Cable

To connect a SummitStack 128G cable, follow these steps:

1 Holding the cable connector with the release tab on top, align the connector with the stacking port on the VIM1 module in the Summit X 650 series switch (see Figure 222).

Figure 222: Connecting a SummitStack 128G Cable
2 Firmly press the cable connector into the stacking port until the spring latch on top of the connector clicks into place.
3 Repeat the process to connect the other end of the cable.

Connecting a SummitStack 128G/20G Stacking Cable

SummitStack 128G/20G cables are used to connect the 128-Gbps stacking ports on Summit X650 series switches to 20-Gbps stacking ports on Summit X650 series or other Summit series switches.

The 128-Gbps ports are on VIM1-SummitStack256 modules in Summit X650 series switches. The 20Gbps ports are on one of the following:

- VIM1-10G8X module installed in a Summit X650 series switch
- VIM1-SummitStack module in a Summit X650 series switch
- VIM2-SummitStack module in a Summit X480 series switch
- Rear panel of Summit X250e, X450, X450a, or X450e series switches

To connect a SummitStack 128G/20G cable, follow these steps:

1 Connect the 128-Gbps connector to the VIM1-SummitStack256 module as follows:
a Holding the cable connector with the release tab on top, align the connector with the stacking port on the VIM1 module in the Summit X650 series switch.

Figure 223: Connecting the 128G Connector
b Firmly press the cable connector into the stacking port until the spring latch on top of the connector clicks into place.
2 Connect the 20G connector as follows:
a Align the cable connector with the stacking port connector on the rear of the switch (see Figure 224).
b Firmly press the cable connector into place on the mating stacking port connector.
c Align and tighten the retaining screws on the cable connector.

Figure 224: Connecting the 20G Connector

Connecting a SummitStack 128G/64G Stacking Cable

SummitStack 128G/64G cables are used to connect the 128-Gbps stacking ports on Summit X650 series switches to 64-Gbps stacking ports on Summit X480 series switches.

The 128-Gbps stacking ports are on VIM1-SummitStack256 modules; the 64-Gbps stacking ports are on VIM2-SummitStack128 modules.

Because of the weight of the SummitStack 128G/64G cable, Extreme Networks strongly recommends the use of cable management hardware to support the cables and provide strain relief at the connectors. The following figures show representative types of cable management hardware. Your particular rack configuration might require other cable management solutions.

Figure 225: Cable Management Using a J-Shaped Support Bracket

Figure 226: Cable Management Using Tie-Wraps and Stand-Offs
At the Summit X650 series switch, connect the 128G connector to the VIM1-SummitStack256 module. At the Summit X480 series switch, connect the 64G connector to the VIM2-SummitStack128 module. The connection process is the same for each connector and the compatible VIM model.

Follow these steps to connect a 128G Connector to a VIM1-SummitStack256 Module, or a 64G Connector to a VIM2-SummitStack128 Module.

1 Holding the cable connector with the release tab on top, align the connector with the stacking port on the VIM.

Figure 227: Connecting the 128G/64G Cable
2 Firmly press the cable connector into the stacking port until the spring latch on top of the connector clicks into place.

Connecting a SummitStack 64G Stacking Cable

SummitStack 64G cables are used to connect the 64-Gbps stacking ports on the VIM2-SummitStack128 module in Summit X480 series switches.

Because of the weight of the SummitStack 64G cable, Extreme Networks strongly recommends the use of cable management hardware to support the cables and provide strain relief at the connectors. The following figures show representative types of cable management hardware. Your particular rack configuration may require other cable management solutions.

Figure 228: Cable Management Using a J-Shaped Support Bracket

Figure 229: Cable Management Using Tie-Wraps and Stand-Offs
Follow these steps to connect a SummitStack 64G cable:

1 Holding the cable connector with the release tab on top, align the connector with the stacking port on the VIM2 module in the Summit X480 series switch (see Figure 230).

Figure 230: Connecting a SummitStack 64G Cable
2 Firmly press the cable connector into the stacking port until the spring latch on top of the connector clicks into place.
3 Repeat steps 1 and 2 to connect the other end of the cable.

Connecting a SummitStack 64G/20G Stacking Cable

SummitStack 64G/20G cables are used to connect the 64-Gbps stacking ports on Summit X480 series switches to 20-Gbps stacking ports on Summit X 480 series, Summit X 650 series, or other Summit series switches.

The 64-Gbps ports are on VIM2-SummitStack128 modules in Summit X480 series switches. The 20Gbps ports are on one of the following:

- VIM1-10G8X module installed in a Summit X650 series switch
- VIM1-SummitStack module in a Summit X650 series switch
- VIM2-SummitStack module in a Summit X480 series switch
- Rear panel of Summit X250e, X450, X450a, or X450e series switches

Follow these steps to connect a SummitStack 64G/20G cable:

1 Connect the 64-Gbps connector to the VIM2 module as follows:
a Holding the cable connector with the release tab on top, align the connector with the stacking port on the VIM2 module in the Summit X 480 series switch.

Figure 231: Connecting the 64G Connector
b Firmly press the cable connector into the stacking port until the spring latch on top of the connector clicks into place.
2 Connect the 20G connector as follows:
a Align the cable connector with the stacking port connector on the rear of the switch (see Figure 232).
b Firmly press the cable connector into place on the mating stacking port connector.
c Align and tighten the retaining screws on the cable connector.

Figure 232: Connecting the 20G Connector

Connecting Active or Passive QSFP+ Cables

The QSFP+ direct-attach cable is used to connect ports on any of the following modules:

- X460 switch, which supports SummitStack-V80
- X460-G2 switch with VIM-2q module, which supports SummitStack-V160
- X480 switch with VIM2-SummitStack-V80 module
- X670-G2-48x-4q switch, which supports SummitStack-V80, V-160, or V-320
- X770 switch, which supports SummitStack-V160 or V-320

Follow these steps to connect a QSFP+ direct-attach cable.
1 Holding the QSFP+ connector by its sides, insert the connector into the port on the switch as shown in the following figures.

Figure 233: Connecting a QSFP+ Passive Copper Direct-Attach Cable to a SummitStack-V80 Module

Figure 234: Connecting a QSFP+ Active Optical Direct-Attach Cable to a SummitStack-V80 Module

2 Push the connector into the port until you hear it click into place.

Connecting Your Stack to the Management Network

Before you can configure ExtremeXOS for a new stack, your management console must be connected to at least one switch in the stack.

Connect your management console to the Ethernet management port on the switch that will become the stack master node. If you plan to configure redundancy, we recommend connecting to the console ports of all switches in the stack that will be master-capable.

If you followed the cabling examples in Connecting the Switches to Form the Stack Ring on page 239, and if you use the Easy Setup configuration procedure, only slots 1 and 2 will be allowed to become the master node. However, you may connect all switch management ports in the stack if you choose to do so. There is an alternate IP address configuration that will enable you to log in directly to each switch in the stack through its Ethernet management port.

See the ExtremeXOS 16.2 User Guide for instructions to perform the software configuration for your stack.

6 Installing Summit Switches

Safety Considerations for Installing Switches
 Pre-installation Requirements
 Installing a Summit Family Switch
 Installing Internal Power Supplies
 Connecting Network Interface Cables
 Performing Initial Management Tasks

This chapter describes how to install Summit switches and associated components. You will also find information about connecting network interface cables and establishing management access.

Note
The installation instructions are different depending upon what type of power - AC or DC the switch uses.

If you intend to use the SummitStack feature, see Building Stacks on page 202 before you install the switches. That chapter provides guidance for locating stacked switches and connecting the stacking cables.

Safety Considerations for Installing Switches

Read the information in this chapter thoroughly before you attempt to install or remove an Extreme Networks switch.

Caution

Ensure that proper ESD (electrostatic discharge) controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch housing and earth grounds.

Warning

Connect the chassis ground wire before you connect any DC power cables. Disconnect the ground wire after you disconnect all DC power cables.

Take care to load the equipment rack so that it is not top-heavy. Start installing equipment at the bottom of the rack and work up.

Do not cover vents that would restrict airflow.

$$
\begin{aligned}
& \text { Note } \\
& \text { See Safety Information on page } 409 \text { for additional safety information. } \\
& \text { See Technical Specifications on page } 424 \text { for additional information regarding regulatory } \\
& \text { compliance certifications. }
\end{aligned}
$$

Pre-installation Requirements

Prepare the site for the installation, and ensure that you have the appropriate people and tools on hand.

Installing most Summit series switches requires two people to maneuver the switch and attach mounting hardware.

Provide enough space in front of and behind the switch so that you can service it easily. Allow a minimum of 48 inches (122 cm) in front of the rack and 30 inches (76 cm) behind the rack.

Some Summit switches give you the option of choosing the airflow direction: front-to-back or back-tofront. If your switch has internal power supplies, make sure they have the same airflow direction as the fans in the switch.

Other switches support airflow in only one direction. If your switch model supports only front-to-back airflow and requires the purchase of internal power supplies, make sure that the power supplies are for front-to-back ventilation airflow.

The following items are provided with Summit switches:

- Screws for attaching mounting brackets to the switch housing.
- Two rack mounting brackets adaptable for either a front-mount or mid-mount installation.
- Two rear mounting brackets (rails) for rear mounting in a four-post or cabinet installation.

Note

Rails are supplied only with the following switches:

- X450-G2
- X460-G2 PoE (Power over Ethernet) models:

X460-G2-24p-GE4

X460-G2-24p-10GE4

X460-G2-48p-GE4
X460-G2-48p-10GE4

- X480
- X670 and X670V
- X670-G2
- X770

You need the following additional tools and equipment. These are not provided with your switch.

- Rack mounting screws: eight for a four-post installation; four for other installations. The screw size will vary based on your organization's rack system. Screws are not provided.
- Screwdriver for securing the switch to the rack. The screwdriver size will vary based on the requirements for the rack system you are using.
- \#1 Phillips screwdriver to attach bracket screws that are provided with the switch. We recommend using a magnetic screwdriver.
- AC power cord. For switches with removable AC power supplies, a separate power cord is needed for each installed power supply. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.
- ESD-preventive wrist strap for installing optional ports at the back of the switch.

Installing a Summit Family Switch

Before you attempt to install or remove an Extreme Networks switch, read the precautions in Safety Considerations for Installing Switches on page 263 and Pre-installation Requirements on page 264.

If you are installing switches for use in a SummitStack configuration, read Building Stacks on page 202 before you install the switches.

ExtremeSwitching and Summit switches fit into standard 19-inch equipment racks.
The provided rack-mounting brackets attach to the front of the switch and are adaptable to either a front-mount or mid-mount installation. Rear-mounting brackets are included with some switch models for four-post racks or cabinets.

To install an Extreme Networks switch, refer to the specific instructions for your switch model.

Installing a Summit $\times 430-8$ p or $\times 440-8 t$ Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
An X430-8p switch or an X440-8t switch can be installed in either of two ways:

- To install the switch in desktop or free-standing mode see Installing Summit Switches in Desktop or Free-Standing Mode on page 280.
- To front-mount the switch in a two-post rack, perform the following steps.

1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.

2 On one side of the switch, set a mounting bracket against the switch housing. Set the flange even with the front panel of the switch.
See Figure 235.

Note

The mounting brackets have special "keep out" flanges to ensure that there is enough empty space above and below the switch. Place the brackets with the "keep out" flanges on either side of the switch.

Figure 235: Attaching brackets to the Summit X430-8p or X440-8t Series Switch (X440-8t shown)

3 Use six of the provided screws to secure the bracket to the switch housing.
4 Repeat the previous two steps to attach the other bracket to the other side of the switch.
5 Slide the switch into the equipment rack.
6 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
7 Connect the power cables.
For AC-powered units, connect the power cable to the AC power connector on the back of the switch. Then connect the power cable to an AC power socket.

For DC-powered units, see Connecting DC-Powered Switches to a Power Source on page 282.
8 Connect the switch to the redundant power supply (if applicable). For instructions to install and connect redundant power supplies, see Installing Summit External Power Supplies on page 317.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Installing a Summit X450-G2 Switch in a Rack

In addition to the equipment listed in Pre-installation Requirements on page 264, you will also need the following items for grounding the X450-G2 switch:

- \#14 AWG copper cable

The recommended insulation color is green or green with yellow stripe.

- Straight-tip torque screwdriver

The Summit X450-G2 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.
2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack or cabinet.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack. (Rack-mounting screws are not provided.)

6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
Otherwise, skip to the next step.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
See Figure 236.

Figure 236: Inserting the Rear Mounting Brackets Between the Pegs on the Side of the Switch
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.
7 Ground the switch.
a At one end of the wire, strip the insulation to expose $1 / 2$ inch (12 mm) of bare wire.
b Identify the grounding screw on the back of the switch.
c Insert the stripped wire into the grounding lug.
d Using a straight-tip torque screwdriver, tighten the retaining screw to $20 \mathrm{in}-\mathrm{lb}$ (2.25 Nm).
e Connect the other end of the wire to a known reliable earth ground point at your site.
To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X450-G2 series PoE+ switches are shipped without installed power supplies. You can install one or two 715 W or 1100W AC power supplies.

After the switch is secured to the rack, install the necessary power supplies. Follow the instructions in Installing a 715 W or 1100 W Internal AC Power Supply on page 310.

If your switch came with power supplies already installed, follow the instructions in Connecting ACPowered Switches to a Power Source on page 281.

Installing a Summit X460 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X460 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the back of the switch unit and are adaptable to a midmount installation.

1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch as shown in Figure 237.

Figure 237: Attaching a Rack-mounting Flange
3 Use six of the provided screws to secure the bracket to the switch housing.
4 Repeat the previous two steps to attach the other bracket to the other side of the switch.
5 Slide the switch into the equipment rack.
6 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

The Summit X460 series switch is shipped without installed power supplies. You can install one or two power supplies. After the switch is secured to the rack, install the necessary power supplies for your configuration. For instructions, see the following topics:

- Installing a 300 W or 750 W Internal AC Power Supply on page 305
- Installing a 300 W Internal DC Power Supply on page 286

To install an XGM3-2sf port card, see Installing a Summit XGM3 Series Port Option Card on page 356.

To install a stacking module, see Installing an Option Card in Slot B of a Summit X460 Series Switch on page 357.

Installing a Summit X460-G2 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X460-G2 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation.

Optionally, PoE models (X460-G2-24p-GE4, X460-G2-24p-10GE4, X460-G2-48p-GE4, and 460-
G2-48p-10GE4) can be mounted in a four-post rack or cabinet. Rear-mounting brackets are included for this purpose.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.

2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack or cabinet.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack. (Rack-mounting screws are not provided.)
6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X460-G2 series switches are shipped without installed power supplies.

After the switch is secured to the rack, install the necessary power supplies.

- For POE+ switches, follow the instructions in Installing a 715 W or 1100 W Internal AC Power Supply on page 310.
- For non-POE+ switches, follow the instructions in Installing a 300 W or 750 W Internal AC Power Supply on page 305 or Installing a 300 W Internal DC Power Supply on page 286.

Installing a Summit X480 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X 480 series switch fits into a standard 19-inch equipment rack.

The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.
2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.

See Figure 238.

Figure 238: Attaching a Rear Mounting Bracket
c Securely tighten the rack mounting screws, as shown in Figure 239.

Figure 239: Fastening the Rear Mounting Brackets
To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X480 series switches are shipped without installed power supplies. You can install one or two 450W AC or DC power supplies.

After the switch is secured to the rack, install the necessary power supplies for your configuration. Follow the instructions in Installing a 450 W or 550 W Internal AC Power Supply on page 308 or Installing a 450 W or 550 W Internal DC Power Supply on page 292.

Installing a Summit X650 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X650 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.

2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.
See Figure 240.

Figure 240: Attaching a Rear Mounting Bracket
c Securely tighten the rack mounting screws, as shown in Figure 241.

Figure 241: Fastening the Rear Mounting Brackets
To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X650 series switches are shipped without installed power supplies. You can install one or two 850W AC or DC power supplies.

After the switch is secured to the rack, install the necessary power supplies for your configuration. Follow the instructions in Installing an 850 W Internal AC Power Supply on page 311 or Installing an 850 W Internal DC Power Supply on page 298.

Installing a Summit X670 Switch in a Rack

In addition to the equipment listed in Pre-installation Requirements on page 264, you will also need the following items for grounding the Summit X670 switch:

- \#14 AWG copper cable

The recommended insulation color is green or green with yellow stripe.

- Crimping tool for attaching the ring terminal to the ground wire

A grounding kit - consisting of a ring terminal (equivalent to Panduit PV14-8R-E) and M4 screw with captive washer - is provided.

The Summit X 670 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.

2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack or cabinet.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)

6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets. Otherwise, skip to the next step.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
See Figure 242.

Figure 242: Inserting the Rear Mounting Brackets Between the Pegs on the Side of the Switch
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.

7 Ground the switch as shown in Figure 243 on page 276.
a Strip 0.25 inch from the end of the AWG \# 14 copper wire.
b Securely crimp the provided ring terminal onto the stripped wire.
c Insert the provided M4 screw through the ring terminal and into the grounding stud on the front of the switch.
d Securely tighten the screw.

Figure 243: Grounding a Summit X670 Series Switch
To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

If you are installing a VIM4 module in the Summit X670V-48x switch, install it in the switch before you connect the switch to power. (See Installing a Versatile Interface Module in a Summit X460, X480, X650, or X 670 Series Switch on page 358.)

Summit X670 series switches are shipped without installed power supplies. You can install one or two 450 W or 550 W AC or DC power supplies.

After the switch is secured to the rack, install the necessary power supplies for your configuration. Follow the instructions in Installing a 450 W or 550 W Internal AC Power Supply on page 308 or Installing a 450 W or 550 W Internal DC Power Supply on page 292.

Installing a Summit X670-G2 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X670-G2 series switch fits into a standard 19-inch equipment rack.
The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.

2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack or cabinet.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack.
(Rack-mounting screws are not provided.)
6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X670-G2 series switches are shipped without installed power supplies. You can install one or two 550W AC or DC power supplies.

After the switch is secured to the rack, install the necessary power supplies for your configuration. Follow the instructions in Installing Internal Power Supplies on page 285.

Installing a Summit X770 Switch in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
The Summit X 770 series switch fits into a standard 19-inch equipment rack.

The provided rack-mounting brackets attach to the front of the switch unit and are adaptable to either a front-mount or mid-mount installation. Optional rear-mounting brackets are also included for four-post racks or cabinets.

1 On one side of the switch, set a mounting bracket against the switch housing.
To mid-mount the switch, set the flange toward the back of the switch.
To front-mount the switch, set the flange even with the front panel of the switch.
To mount the switch on a four-point rack or in a cabinet, set the flange even with the front panel of the switch.
2 Use six of the provided screws to secure the bracket to the switch housing.
3 Repeat the previous two steps to attach the other bracket to the other side of the switch.
4 Slide the switch into the equipment rack.
5 Secure the mounting bracket flanges to the rack, using screws that are appropriate for the rack. (Rack-mounting screws are not provided.)

6 If you are mounting the switch in a four-post rack or a cabinet, secure the rear mounting brackets.
a At the rear of the rack or cabinet, for each side, slide the rear mounting brackets (rails) between the two rows of pegs on either side of the switch.

See Figure 244.

Figure 244: Inserting the Rear Mounting Brackets Between the Pegs on the Side of the Switch
b Secure the rear mounting brackets to the rack posts using suitable screws. Be sure that the switch is level.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Summit X770 series switches are shipped without installed power supplies. You can install one or two 550W AC or DC power supplies.

After the switch is secured to the rack, install the necessary power supplies for your configuration. Follow the instructions in Installing a 450 W or 550 W Internal AC Power Supply on page 308 or Installing a 450 W or 550 W Internal DC Power Supply on page 292.

Installing Other Summit Switches in a Rack

Before you begin the installation, refer to Pre-installation Requirements on page 264.
This section describes how to install the following Summit switch models:

- Summit X150
- Summit X250e
- Summit X350
- Summit X430 (except X430-8p)
- Summit X440 (except X440-8t)
- Summit X450
- Summit X450a
- Summit X450e

The following items are provided with your Summit switch:

- Mounting brackets
- Screws to secure the mounting brackets to the switch
- Eight M3 screws for Summit X350, X440, X450, X450a, and X450e series switches
- Twelve M4 screws for Summit X150 and X250e series switches
- Four rubber mounting feet for table top stacking

Your Summit switch fits into a standard 19-inch equipment rack. it can be installed in either of two ways:

- To install the switch in desktop or free-standing mode see Installing Summit Switches in Desktop or Free-Standing Mode on page 280.
- To mid-mount the switch in a two-post rack, perform the following steps.

1 Place the switch upright on a stable work surface.
2 Place a mounting bracket over the mounting holes on one side of the unit.
3 Insert the screws and fully tighten with a suitable screwdriver, as shown in the following figures.

Figure 245: Attaching the Mounting Bracket: Summit X150 and X250e

Figure 246: Attaching the Mounting Bracket: Summit X350, X440, X450, X450a, and X450e

4 Repeat the previous two steps to attach the other bracket to the other side of the switch.
5 Slide the switch into the equipment rack.
6 Secure the switch with suitable screws (not provided).
7 Connect the power cables.
For AC-powered units, connect the power cable to the AC power connector on the back of the switch. Then connect the power cable to an AC power socket.

For DC-powered units, see Connecting DC-Powered Switches to a Power Source on page 282.
8 Connect the switch to the redundant power supply (if applicable). For instructions to install and connect redundant power supplies, see Installing Summit External Power Supplies on page 317.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Installing Summit Switches in Desktop or Free-Standing Mode

Before you begin the installation, refer to Pre-installation Requirements on page 264.
Summit family switches are supplied with four self-adhesive rubber pads for desktop mounting.
The pads keep the switch from scratching the supporting surface and help ensure adequate airflow around the switches when they are mounted on top of one another.

For all Summit switches other than the $\times 430-8 p$, you can safely place up to four switches on top of one another.

Caution
Do not place any equipment on top of a desktop-mounted Summit X430-8p switch.

To mount your Summit switches on a desktop (or any firm, flat surface), follow these steps:
1 Carefully separate the four included rubber pads for each switch you are mounting.

2 Apply the pads to the underside of each device by placing a pad in the marked area at each corner of the switch, ensuring that all corners are aligned.
See Figure 247.

Figure 247: Applying the Rubber Pads to the Underside Corners of a Summit Switch

3 Connect the power cables.
For AC-powered units, connect the power cable to the AC power connector on the back of the switch. Then connect the power cable to an AC power socket.

For DC-powered units, see Connecting DC-Powered Switches to a Power Source on page 282.
4 Connect the switch to the external (redundant) power supply, if applicable. For instructions to install and connect external power supplies, see Installing Summit External Power Supplies on page 317.

To install optional pluggable transceivers, such as SFP and SFP+ optical devices, refer to the installation instructions in the Extreme Networks Pluggable Transceivers Installation Guide.

Connecting AC-Powered Switches to a Power Source

An AC power cord is not included with the Summit AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Note

For DC-powered switches, do not use this procedure. Instead, see Connecting DC-Powered Switches to a Power Source on page 282.

To power up an Extreme Networks AC-powered switch, do the following:
1 Connect the AC power cord to the AC power input socket on the switch and an AC power outlet.
2 If applicable, attach the cable from your redundant power supply (RPS) into the switch's redundant power supply receptacle.
3 When power is connected, verify that the PSU LED and RPS LED (if applicable) turns green.

When both LEDs have turned green, follow the instructions in Connecting Network Interface Cables on page 312.

If the PSU and RPS LEDs do not turn green, see the Switch LEDs topic for your switch model (in Summit Switches on page 11) for troubleshooting information.

Connecting DC-Powered Switches to a Power Source

Some Summit switches come with installed power supplies that are designed to be connected to DC power. The instructions in this section provides additional details about connecting the following Summit switches:

- Summit X250e-24tDC
- Summit X250e-24xDC
- Summit X250e-48tDC
- Summit X440-24tDC
- Summit X440-48tDC
- Summit X450a-24tDC
- Summit X450a-24xDC
- Summit X450a-48tDC

You must adhere to specific safety requirements when you connect any of these Summit switches to a DC power source.

Note
For centralized DC power connection, these products are intended to be installed in Restricted Access Locations - like dedicated equipment rooms and equipment closets - in accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA 70.

An optional redundant power supply, the EPS-150DC, is available for use with the Summit DCpowered switches. When the EPS-150DC is used with a DC-powered Summit switch, the power supplies (internal and redundant) are fully fault tolerant and load-sharing. If one power supply fails, the other power supply will provide sufficient power to operate the switch. See EPS-150DC External Power Module (with EPS-T2) on page 149 for further details.

Before you connect the switch to a power source, complete the physical installation of the switch as described in Installing Other Summit Switches in a Rack on page 278.

Then follow the instructions in the following sections:
1 Grounding a Summit X250e or X450a DC-Powered Switch on page 282.
2 Connecting the X250e or X450a DC Wiring Harness to the DC Source Voltage on page 284.
3 Attaching the DC Wiring Harness to the DC Power Socket on the Switch on page 285.

Grounding a Summit X250e or X450a DC-Powered Switch

Before you connect the power input cable to a Summit DC-powered switch, you must ground the chassis, following the instructions in this section.

Gather the following materials to ground the Summit X250e or X450a DC-powered switch:

- Stranded copper wire cable, minimum size 14 AWG, maximum size 6 AWG

The wire should be long enough to reach from the installed switch to the facility ground point

- Torque screwdriver with $1 / 4$-inch flat blade
- Additional grounding hardware appropriate to the earth ground connection at your site

Warning
Be sure to connect the chassis ground wire before you connect any power cables.
To ground the switch:
1 At one end of the wire, strip the insulation to expose $1 / 2$-inch (12 mm) of bare wire.
2 Identify the grounding lug on the back of the switch.
The grounding lug is next to the edge of the back panel, identified by the international symbol for

On a Summit X250e series switch, the grounding lug is on the right side.
On a Summit X450a series switch, the grounding lug is on the left side.
3 Insert the stripped wire into the grounding lug.
4 Using a straight-tip torque screwdriver, tighten the retaining screw to $20 \mathrm{in}-\mathrm{lb}(2.25 \mathrm{Nm}$).
See the following figures.

Figure 248: Attaching the Ground Wire to a Summit X250e Series Switch

Figure 249: Attaching the Ground Wire to a Summit x450a Series Switch
5 Connect the other end of the wire to a known reliable earth ground point at your site.

After grounding the switch, follow the instructions in Connecting the X250e or X450a DC Wiring Harness to the DC Source Voltage on page 284.

Connecting the X250e or X450a DC Wiring Harness to the DC Source Voltage
A three-wire, six-foot long DC wiring harness is included with each Summit X250e or X450a DCpowered switch.

The DC wiring harness must be properly connected to the DC source voltage at your facility by a qualified electrician before you attach the connector on the wiring harness to the DC power supply socket on the switch. Figure 250 on page 284 shows the wiring harness and connector. For information about the wire-to-pin connection, see Table 475 on page 541 and Table 482 on page 544.

Warning

The Summit DC-powered switch and rack must be connected to protective earth ground before installing any switch components. See Grounding a Summit X250e or X450a DCPowered Switch on page 282.
A qualified, licensed electrician is required to wire the $D C$ input power harness to your facility's DC source voltage. After the wiring harness is connected, you can remove, replace, and maintain a Summit DC-powered switch without further assistance from an electrician. However, always be sure that the DC circuit is de-energized before connecting or disconnecting the DC power connections at the rear of the switch.

Caution

The DC wiring harness must be properly connected to a DC main circuit breaker rated no greater than 20 A .
Provide proper connection and strain relief on the DC wiring harness in accordance with all local and national electrical codes.

Figure 250: Three-wire Cable Harness

Note

Each wire on the harness has been properly marked for proper attachment to the DC power source. Leave these labels on each lead wire for future reference.

After the DC wiring harness has been connected to the DC power source, follow the instructions in Attaching the DC Wiring Harness to the DC Power Socket on the Switch on page 285.

Attaching the DC Wiring Harness to the DC Power Socket on the Switch

After the DC wiring harness has been connected to a permanent DC voltage source by a qualified, licensed electrician (see Connecting the X250e or X450a DC Wiring Harness to the DC Source Voltage on page 284), you can remove, replace, and maintain a Summit DC-powered switch without further assistance from an electrician. Always be sure, however, that the DC circuit is de-energized before you connect or disconnect the DC power connections at the rear of the switch.

Caution

Be sure that proper ESD controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch chassis and earth grounds.

To attach the DC wiring harness to the internal DC power supply, follow these steps:
1 Plug the DC wiring harness connector into the DC power supply socket on the rear of the switch (see Figure 251).
The pins must align properly for the cable to completely connect. Do not force the cable into the socket until the keyway is aligned properly. Figure 250 on page 284 shows the DC wiring harness connector.

Figure 251: DC Power Socket on a DC-Powered Switch (Summit X450a Shown)
Note
The figure shows the rear panel of a Summit X450a DC-powered switch. Although the rear
panels of other Summit DC-powered switches might vary slightly, the DC power socket is
of the same type and the connection process is the same.

2 Tighten the retainer nut on the connector until it is finger-tight.
3 Energize the DC circuit.
The switch ports can now be connected to other switches or routers. See Connecting Network Interface Cables on page 312.

Installing Internal Power Supplies

If your switch does not have an installed internal power supply, you can install one or two power supplies.

To see which internal power supplies are compatible with your switch, see Table 74 on page 160.
Note
If you are installing a VIM4 module in the Summit X670V-48x switch, install it in the switch
before you connect the switch to power (see Installing a Versatile Interface Module in a
Summit X460, X480, X650, or X670 Series Switch on page 358).

Follow the instructions in the following sections to install the appropriate power supply and connect power to the switch.

Installing a 300 W Internal DC Power Supply

Caution

Make sure that the DC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions. You may use up to a 30-Amp breaker.

To install a 300 W DC power supply (part no. 10933 or 10944) in a switch, perform the following tasks in the order listed:

1 Make sure you have the tools and materials you need.
See Required Tools and Materials for Installing a 300 W DC Power Supply on page 286.
2 Prepare the power cables and ground cable by attaching the provided connection lugs to the cables.
See Preparing the Cables for a 300 W DC Power Supply on page 287.
3 Insert the power supply into the switch.
See Installing a 300 W DC Power Supply on page 287.
4 Connect the ground wire.
See Connecting the Ground Wire to a 300 W DC Power Supply on page 289.
5 Connect the power supply to the DC source voltage.
See Connecting a 300 W DC Power Supply to the Source Voltage on page 289.
6 Energize the DC circuit.

Required Tools and Materials for Installing a 300 W DC Power Supply
You need the following tools and materials to install or remove a 300 W DC power supply in a Summit series switch.

- Two spade terminals (Tyco part number 328281 or equivalent) for connecting the input power cables (provided)
- One ring terminal (Tyco part number 2-320561-4 or equivalent) and screw with captive lock washer (type 6-32 UNC) for connecting the ground wire (both provided)
- \#14 AWG copper cable for grounding the power supply and connecting the power supply to the DC power source. (DC power and grounding cables are not included with the power supply.) Recommended insulation colors are:
- Red for the -48 V connection (-)
- Black for the -48 V RTN connection (+)
- Green or green with yellow stripe for the ground connection
- Connection hardware appropriate to the installation site:
- Hardware for connecting the power wires to the DC source
- Hardware for connecting the ground wire to the site grounding point
- Stripping tool
- Crimping tool for attaching the lug to the ground wire
- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- ESD-preventive wrist strap
- Thermal protective gloves (required for removal of a power supply)

Connection lugs for power and ground and a screw for connecting the ground wire are shipped with the power supply.

Preparing the Cables for a 300 W DC Power Supply

A ring terminal and two spade terminals are provided with the power supply.
You need a crimping tool to attach the terminals to the power and ground cables.
To prepare the cable wires, follow these steps:
1 On each cable wire, strip 0.25 inch (6.35 mm) of insulation from one end.
2 Insert the end of one power cable wire all the way into the barrel of a spade terminal and crimp the terminal securely to the wire.

Figure 252: Attaching a Spade Terminal to a Cable
3 Repeat step 2 for the other power cable wire.
4 Insert the end of the stripped ground wire (green or green and yellow) all the way into the barrel of the ring terminal and crimp the terminal securely to the wire.

Figure 253: Attaching a Ring Terminal to a Ground Cable

Installing a 300 W DC Power Supply

Before installing a Summit 300 W power supply (part no. 10933 or 10944):

- Verify that the switch chassis has been grounded.
- Verify that the airflow direction for the power supply is the same as the airflow direction of the installed fan modules in the switch.

To install the power supply, follow these steps:
Caution
The handle on the power supply is not designed to be used to lift or carry the power supply or the switch to which it is attached.

1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 If necessary, remove a blank panel from the back of the switch.

Figure 254: Removing a Blank Panel
3 Verify that the power supply is right side up.
The power supply should be oriented as shown in Figure 255.
4 Carefully slide the power supply all the way into the power supply bay.

Figure 255: Installing a Summit 300 W DC Power Supply (Back-to-Front Model 10933 Shown)

5 Push the power supply in until the latch snaps into place.

Caution

Do not slam the power supply into the switch.
6 To install a second power supply, repeat the procedure.
7 Connect the ground wire, following the steps in Connecting the Ground Wire to a 300 W DC Power Supply on page 289.

Connecting the Ground Wire to a 300 W DC Power Supply

Follow these steps to connect the ground wire to a Summit 300 W DC power supply.

Warning

Be sure to connect the chassis ground wire before you connect any power cables.

Warning

Be sure to disconnect the ground wire after you disconnect all power cables.

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Pull the cover off the terminal block.
4 Identify the grounding point on the front panel of the power supply.
5 Connect the ground wire to the grounding point as follows:
a Insert a 6-32 UNC screw (provided) through the ring terminal and into the grounding point on the power supply.

See Figure 256.

Figure 256: Connecting the Ground Wire (Front-to-Back Model 10933 Shown)
1 = Grounding point $\quad 2$ = Ground wire
b Tighten the screw to 12.6 in- $\mathrm{lb}(1.42 \mathrm{~N} \mathrm{~m}$).
6 Connect the other end of the wire to a known reliable earth ground point at your site.
7 Connect the power supply to the source, following the instructions in Connecting a 300 W DC Power Supply to the Source Voltage on page 289.

Connecting a 300 W DC Power Supply to the Source Voltage

Two 300 W DC power supplies are available: model 10933 (front-to-back airflow) and model 10944 (back-to-front airflow). Both can connect to either a +24 V or a -48 V power source.

The connection instructions, starting at step 4 on page 290, are different depending upon whether you are connecting to $\mathrm{a}+24 \mathrm{~V}$ power source or $\mathrm{a}-48 \mathrm{~V}$ power source.

The DC power connection at your facility must be made by a qualified electrician, following these instructions.

Warning

Always make sure that the DC circuit is de-energized before connecting or disconnecting the DC power cables on the DC power supply.

Caution

Provide proper connection and strain relief on the DC power cables in accordance with all local and national electrical codes.

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Slide the cover off the terminal block.
4 Connect the DC power input cables as follows:
When connecting the power supply to $a+24 \mathrm{~V}$ source:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.

Figure 257: Loosening Terminal Screws (Connecting to a +24 V Source)
b Slide the spade terminal of the negative wire (-24 V) under the captive square washer on the negative terminal (labeled -24 V).
c Slide the spade terminal of the positive wire (+24 V) under the captive square washer on the positive terminal (+24 V).
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.25 \mathrm{~N} \mathrm{~m})$.

Figure 258: Tightening Terminal Screws (Connecting to a +24 V Source)
When connecting the power supply to a -48 V source:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.

Figure 259: Loosening Terminal Screws (Connecting to a -48 V Source)
b Slide the spade terminal of the negative wire $(-48 \mathrm{~V})$ under the captive square washer on the negative terminal (labeled -48 V).
c Slide the spade terminal of the positive wire (-48 V RTN) under the captive square washer on the positive terminal (labeled RTN).
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.25 \mathrm{~N} \mathrm{~m})$.

Figure 260: Tightening Terminal Screws (Connecting to a-48 V Source)
5 Slide the cover into place over the terminal block.
6 Connect the cables to the DC source voltage, using hardware appropriate to the installation site and following local and national electrical codes.
7 Energize the DC circuit.
Leave the ESD strap permanently connected to the rack, so that the strap is always available when you need to handle ESD-sensitive components.

You can now connect network interface cables to the switch, using the instructions in Connecting Network Interface Cables on page 312.

Installing a 450 W or 550 W Internal DC Power Supply

Summit 450 W power supplies are compatible with Summit X 480 series switches and with Summit X670 series switches that have front-to-back ventilation airflow.

Summit 550 W power supplies are compatible with Summit $X 670$ and $X 770$ series switches. They are available in versions for switches with either front-to-back or back-to-front airflow.

Note

You cannot combine power supplies of different wattages in the same switch.

To install a Summit 450 W or 550 W DC power supply, refer to the following sections as needed:
1 Make sure you have the tools and materials you need.
See Required Tools and Materials for Installing a 450 W or 550 W DC Power Supply on page 293.
2 Prepare the power cables and ground cable by attaching the provided connection lugs to the cables. See Preparing the Cables for a 450 W or 550 W DC Power Supply on page 293.

3 Insert the power supply into the switch.
See Installing a 450 W or 550 W DC Power Supply on page 294.
4 Connect the ground wire.
See Connecting the Ground Wire to a 450 W or 550 W DC Power Supply on page 295.
5 Connect the power supply to the electrical source and energize the DC circuit.
See Connecting a 450 W or 550 W DC Power Supply to the Source Voltage on page 297.

Required Tools and Materials for Installing a 450 W or 550 W DC Power Supply
You need the following tools and materials to install or remove a 450 W or 550 W DC power supply in a Summit series switch.

- Three spade terminals (Panduit part number PN14-6FN or equivalent) for connecting the ground and input power cables (provided)
- \#14 AWG copper cable for grounding the power supply and connecting the power supply to the DC power source. (DC power and grounding cables are not included with the power supply.) Recommended insulation colors are:
- Red for the -48 V connection (-)
- Black for the -48 V RTN connection (+)
- Green or green with yellow stripe for the ground connection
- Connection hardware appropriate to the installation site:
- Hardware for connecting the power wires to the DC source
- Hardware for connecting the ground wire to the site grounding point
- Stripping tool
- Crimping tool for attaching the lug to the ground wire
- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- ESD-preventive wrist strap
- Thermal protective gloves (required for removal of a power supply)

Spade-type connection lugs for power and ground are shipped with the power supply.

Preparing the Cables for a 450 W or 550 W DC Power Supply
Three spade-type terminals are provided with the power supply.
You need a crimping tool to attach the terminals to the power and ground cables.
To prepare the cable wires, follow these steps:
1 On each cable wire, strip 0.25 inch (6.35 mm) of insulation from one end.

2 Insert the end of one power cable wire all the way into the barrel of a spade terminal and crimp the terminal securely to the wire.

Figure 261: Attaching a Spade Terminal to a Cable
3 Repeat step 2 for the other power cable wire and for the ground wire.

Installing a 450 W or 550 W DC Power Supply

Before installing a Summit 450 W or 550 W DC power supply:

- Verify that the switch rack or chassis has been grounded.
- Verify that the airflow direction for the power supply is the same as the airflow direction of the installed fan modules in the switch.

To install the power supply, follow these steps:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 If necessary, remove a blank panel from the back of the switch.

Figure 262: Removing a Blank Panel
3 Verify that the power supply is right side up.
The power supply should be oriented as shown in Figure 263.

4 Carefully slide the power supply all the way into the power supply bay.

Figure 263: Installing a Power Supply
5 Push the power supply in until the latch snaps into place.

Caution
Do not slam the power supply into the switch.
6 To install a second power supply, repeat the procedure.

Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

7 Connect the ground wire, following the steps in Connecting the Ground Wire to a 450 W or 550 W DC Power Supply on page 295.

Connecting the Ground Wire to a 450 W or 550 W DC Power Supply
You need a \#1 Phillips screwdriver to secure the ground wire to the power supply.

Warning

Be sure to connect the chassis ground wire before you connect any power cables.

Warning

Be sure to disconnect the ground wire after you disconnect all power cables.

To connect the ground wire to a Summit 450 W or 550 W DC power supply, follow these steps:
1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Slide the cover off the terminal block.
4 Identify the grounding point at the left of the terminal block.
See Figure 264.

5 Connect the ground wire to the grounding point as follows:
a Loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.

Figure 264: Connecting the Ground Wire
b Slide the spade terminal of the ground wire under the captive square washer.
c Tighten the screw to 7 in-lb $(0.79 \mathrm{Nm})$ as shown in Figure 265.

Figure 265: Securing the Ground Wire
6 Connect the other end of the wire to a known reliable earth ground point at your site.
7 Connect the power supply to the source, following the instructions in Connecting a 450 W or 550 W DC Power Supply to the Source Voltage on page 297.

Connecting a 450 W or 550 W DC Power Supply to the Source Voltage
Summit 450 W or 550 W DC power supply units must connect to a -48 V source.
The DC power connection at your facility must be made by a qualified electrician, following these instructions.

Warning

Always make sure that the DC circuit is de-energized before connecting or disconnecting the DC power cables on the DC power supply.

Caution

Provide proper connection and strain relief on the DC power cables in accordance with all local and national electrical codes.

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Slide the cover off the terminal block.
4 On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.
5 Connect the DC power input cables as follows:
a Slide the spade terminal of the negative wire (-48 V) under the captive square washer on the negative terminal (labeled -).

Figure 266: Connecting the Negative Power Wire to a -48V Source (450 W or 550 W DC Power Source)
b Slide the spade terminal of the positive wire (-48 V RTN) under the captive square washer on the positive terminal (labeled +).

Figure 267: Connecting the Positive Power Wire to a -48V Source (450 W or 550 W DC Power Source)

6 Tighten both screws on the terminal block to $7 \mathrm{in}-\mathrm{lb}(0.79 \mathrm{Nm})$.
7 Snap the cover into place over the terminal block.
8 Connect the cables to the DC source voltage, using hardware appropriate to the installation site and following local and national electrical codes.
9 Energize the DC circuit.
Leave the ESD strap permanently connected to the rack, so that the strap is always available when you need to handle ESD-sensitive components.

You can now connect network interface cables to the switch, using the instructions in Connecting Network Interface Cables on page 312.

Installing an 850 W Internal DC Power Supply

The Summit X650 series switch is shipped without installed power supplies.
The switch accommodates one or two Summit 850 W power supply units.

Caution

Make sure that the DC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions. You may use up to a 30 Amp breaker.

To install the 850 W DC power supply, perform the following tasks in the order listed:

1 Make sure you have the tools and materials you need.
See Required Tools and Materials for Installing an 850 W DC Power Supply on page 299.
2 Prepare the power cables and ground cable by attaching the provided connection lugs to the cables.
See Preparing the Cables for an 850 W DC Power Supply on page 299.
3 Insert the power supply into the switch.
See Installing an 850 W DC Power Supply on page 300.
4 Connect the ground wire.
See Connecting the Ground Wire to an 850 W DC Power Supply on page 301.
5 Connect the power supply to the DC source voltage.
See Connecting an 850 W DC Power Supply to the DC Source Voltage on page 302.
6 Energize the DC circuit.

Required Tools and Materials for Installing an 850 W DC Power Supply
You need the following tools and materials to install or remove an 850 W DC power supply in a Summit X650 series switch.

- Two spade terminals (Tyco part number 328281 or equivalent) for connecting the input power cables (provided)
- One ring terminal (Tyco part number 130496 or equivalent) and screw with captive lock washer (type M3.5) for connecting the ground wire (both provided)
- \#12 AWG stranded copper cable for grounding the power supply and connecting the power supply to the DC power source. (A DC power cord is not included with the power supply.) Recommended insulation colors are:
- Red for the -48 V connection (-)
- Black for the -48 V RTN connection (+)
- Green or green with yellow stripe for the ground connection
- Connection hardware appropriate to the installation site:
- Hardware for connecting the power wires to the DC source
- Hardware for connecting the ground wire to the site grounding point
- Stripping tool
- Crimping tool for attaching the lug to the ground wire
- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- ESD-preventive wrist strap
- Thermal protective gloves (required for removal of a power supply)

Connection lugs for power and ground and a screw for connecting the ground wire are shipped with the power supply.

Preparing the Cables for an 850 W DC Power Supply

A ring terminal and two spade terminals are provided with the power supply. You need a crimping tool to attach the terminals to the power and ground cables.

To prepare the cable wires, follow these steps:

1 On each cable wire, strip 0.25 inch (6.35 mm) of insulation from one end.
2 Insert the end of one power cable wire all the way into the barrel of a spade terminal and crimp the terminal securely to the wire.

Figure 268: Attaching a Spade Terminal to a Cable
3 Repeat step 2 for the other cable wire.
4 Insert the end of the stripped ground wire (green or green and yellow) all the way into the barrel of the ring terminal and crimp the terminal securely to the wire.

Figure 269: Attaching a Ring Terminal to a Ground Cable

Installing an 850 W DC Power Supply
Before installing an 850 W DC power supply in a Summit X650 series switch:

- Verify that the switch rack or chassis has been grounded.
- Verify that the airflow direction for the power supply is the same as the airflow direction of the installed fan modules in the switch.

To install the power supply, follow these steps:

Caution

The handle on the power supply is not designed to be used to lift or carry the power supply or the switch to which it is attached.

1 Attach an ESD-preventive wrist strap to your bare wrist.

2 If necessary, remove a blank panel from the back of the switch.
See Figure 270.

Figure 270: Removing a Blank Panel
3 Verify that the power supply is right side up.
The proper orientation is shown in Figure 271.
4 Carefully slide the power supply all the way into the power supply bay.
See Figure 271.

Figure 271: Installing an 850 W DC Power Supply
5 Push the power supply in until the latch snaps into place.

Caution

Do not slam the power supply into the switch.
6 To install more power supplies, repeat the procedure.
7 Connect the ground wire, following the steps in Connecting the Ground Wire to an 850 W DC Power Supply on page 301.

Connecting the Ground Wire to an 850 W DC Power Supply
Warning
Be sure to connect the chassis ground wire before you connect any power cables.

Warning

Be sure to disconnect the ground wire after you disconnect all power cables.
To connect the ground wire:
1 Verify that the DC circuit is de-energized.
2 Identify the grounding point on the front panel of the power supply.

Figure 272: Connecting the Ground Wire
\square

1 = Grounding point	$2=$ Ground wire

3 Insert an M3.5 screw (provided) through the ring terminal and into the grounding point on the power supply.
4 Tighten the screw to 12.6 in- lb (1.42 N m).
5 Connect the other end of the wire to a known reliable earth ground point at your site.

Connecting an 850 W DC Power Supply to the DC Source Voltage

The DC power connection at your facility must be made by a qualified electrician, following the instructions in this section.
Warning
Always make sure the DC circuit is de-energized before connecting or disconnecting the DC
power cables on the power supply.

To connect the DC power input cables:
1 Verify that the DC circuit is de-energized.
2 Slide the cover off the terminal block (see Figure 273 on page 303).

3 Connect the DC power input cables as follows:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.
b Slide the spade terminal of the negative wire (-48 V) under the captive square washer on the negative terminal (labeled -48 V).
c Slide the spade terminal of the positive wire ($-48 \vee$ RTN) under the captive square washer on the positive terminal (labeled RTN).

Figure 273: Connecting the DC Power Cables (Part 1)
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.2 \mathrm{~N} \mathrm{~m})$.

4 Slide the cover into place over the terminal block.

Figure 274: Connecting the DC Power Cables (Part 2)
5 Connect the cables to the DC source voltage, using hardware appropriate to the installation site and following local and national electrical codes.
6 Energize the DC circuit.
Leave the ESD strap permanently connected to the rack, so that the strap is always available when you need to handle ESD-sensitive components.

You can now connect network interface cables to the switch, using the instructions in Connecting Network Interface Cables on page 312.

Installing Internal AC Power Supplies

The following AC internal power supplies (PSUs) are available for Extreme Networks switches:
300 W AC PSU Part numbers 10930 and 10930A. Compatible with X460 and X460-G2 switches. For installation instructions, see Installing a 300 W or 750 W Internal AC Power Supply on page 305.

450 W AC PSU Part numbers 10917 and 10918. Compatible with X480 and X670 switches. For installation instructions, see Installing a 450 W or 550 W Internal AC Power Supply on page 308.
550 W AC PSU Part numbers 10925 through 10928. Compatible with X670, X670-G2 and X770-32a switches. For installation instructions, see Installing a 450 W or 550 W Internal AC Power Supply on page 308.

715 W AC PSU Part numbers 10951 and 10952. Compatible with X450-G2 and X460-G2 PoE switches. For installation instructions, see Installing a 715 W or 1100 W Internal AC Power Supply on page 310.
750 W AC PSU Part number 10931. For PoE switches. Compatible with the EPS-C2 external power supply. For installation instructions, see Installing a 300 W or 750 W Internal AC Power Supply on page 305.

1100 W AC PSU Part numbers 10941 and 10942. Compatible with X450-G2 and X460-G2 PoE switches. For installation instructions, see Installing a 715 W or 1100 W Internal AC Power Supply on page 310.

Selecting Power Cords for AC Power Supplies

An AC power cord is not included with a Summit AC power supply.

You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed under Power Cord Requirements for ACPowered Switches and AC Power Supplies on page 543.

Installing a 300 W or 750 W Internal AC Power Supply
To install a 300 W or 750 W AC power supply in a switch, follow these instructions.

Warning

To prevent an electrical hazard, make sure that the AC power cord is not connected to the power supply before you install the power supply in the power supply bay.

Caution
Make sure that the AC power supply circuit is not overloaded. Use proper over-current protection, such as a circuit-breaker, to prevent over-current conditions.

1 If necessary, remove a blank panel from the back of the switch (see the following figures).

Figure 275: Removing a Blank Panel (300 W Power Supply Unit)

Figure 276: Removing a Blank Panel (750 W Power Supply Unit)
2 Verify that the power supply is right side up.
3 Verify that the power supply's airflow direction (front-to-back or back-to-front) is compatible with the switch.

4 Carefully slide the power supply all the way into the power supply bay (see the following figures).

Figure 277: Installing a 300 W AC Power Supply

Figure 278: Installing a 750 W AC Power Supply
5 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.

Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

6 Connect the AC power cord.
For 300 W AC power supplies: connect the AC power cord to the input connector on the power supply and rotate the wire clip into place over the power cord connector.

For 750 W AC power supplies:
a If necessary, slide the plastic cord retainer farther away from the back of the switch (see Figure 279).

Figure 279: Moving the Power Cord Retainer
b Connect the AC power cord to the input connector (see Figure 280).

Figure 280: Connecting the Power Cord
c Open the clip and slip it over the barrel of the connector (see Figure 281).

Figure 281: Attaching the Power Cord Retainer
d Snap the clip firmly around the connector.

7 Connect the other end of the power cord to an AC power outlet.
Warning
Always make sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

To install a second power supply, repeat step 1 on page 305 through step 7.

Installing a 450 W or 550 W Internal AC Power Supply

Some switches are shipped without installed power supplies. They accommodate one or two Summit 450 W or 550 W AC power supply units.

Summit 450 W AC power supplies are compatible with switches that have front-to-back ventilation airflow. Summit 550 W AC power supplies are available for switches with either front-to-back or back-to-front airflow.

Note

You cannot combine 450 W power supplies and 550 W power supplies in the same switch.

An AC power cord is not included with the Summit AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Before installing the power supply:

- Verify that the switch rack or chassis has been grounded.
- Verify that the airflow direction for the power supply is the same as the airflow direction of the installed fan modules in the switch.

When installing an AC power supply, be sure to observe the following precautions:

Warning

To prevent an electrical hazard, make sure that the AC power cord is not connected to the power supply before you install the power supply in the power supply bay.

Caution

Make sure the AC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.

To install a Summit 450 W or 550 W power supply (AC power), follow these steps:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.

2 If necessary, remove a blank panel from the back of the switch.

Figure 282: Removing a Blank Panel
3 Verify that the power supply is right side up.
The power supply should be oriented as shown in Figure 283.
4 Carefully slide the power supply all the way into the power supply bay.

Figure 283: Installing a Power Supply
5 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.

6 To install a second power supply, repeat the procedure.

Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

7 Connect the AC power cord to the input connector on the power supply.
Warning
Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

8 Connect the cord to an AC power outlet.

Installing a 715 W or 1100 W Internal AC Power Supply
Warning
To prevent an electrical hazard, make sure that the AC power cord is not connected to the power supply before you install the power supply in the power supply bay.

Caution

Make sure the AC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.

An AC power cord is not included with the Summit AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

To install a 715 W or 1100 W AC power supply in a switch, follow these steps:
1 If necessary, remove a blank panel from the back of the switch.
2 Verify that the power supply is right side up.
3 Verify that the power supply's airflow direction (front-to-back or back-to-front) is compatible with the switch.

4 Carefully slide the power supply all the way into the power supply bay, as shown in Figure 284.

Figure 284: Installing a Summit AC Power Supply
5 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.

Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

6 Connect the power cord to the power supply.
If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

7 Connect the power cord to a grounded AC power outlet.

Warning

Always make sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

8 To install a second power supply, repeat the procedure.

Installing an 850 W Internal AC Power Supply

The Summit X650 series switch is shipped without installed power supplies.
The switch accommodates one or two Summit 850 W power supply units.

Caution

Make sure that the AC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.

An AC power cord is not included with the Summit AC power supply. You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier. The cord must meet the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

To install an 850 W AC power supply in a Summit X650 series switch, follow these steps:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate grounding point.
2 If necessary, remove a blank panel from the back of the Summit X650 series switch.

Figure 285: Removing a Blank Panel
3 Verify that the power supply is right side up, with the latching tab at the right of the unit (see Figure 286 on page 312).
4 Carefully slide the power supply all the way into the power supply bay (see Figure 286).

5 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.

Figure 286: Installing a Power Supply
6 To install a second power supply, repeat the procedure.
Note

If power supplies are not installed in both power supply bays, be sure to install a cover over the unoccupied bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

7 Connect an appropriate AC power cord to the power input socket; connect the other end of the power cord to a grounded AC power outlet.

Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the unit.

Connecting Network Interface Cables

Use the appropriate type of cable to connect the ports of your switch to another switch or router.
For connections to the 10GBASE-T ports on the Summit X650-24t switch, see the following table for cable types and distances.

Cable Type	Maximum Distance
CAT5E	55 meters
CAT6	55 meters
CAT6A	100 meters

Note
Cables used for connection to the 10GBASE-T ports on the Summit X650-24t switch must meet the minimum requirements of the IEEE 802.3an standard.

Working carefully, one port at a time, do the following:
1 Verify that you have identified the correct cable for the port.
2 Use an alcohol wipe or other appropriate cleaning agent to clean the cable connectors; make sure they are free of dust, oil, and other contaminants.
3 If you are using optical fiber cable, align the transmit (Tx) and receive ($R x$) connectors with the correct corresponding connectors on the switch or the I/O module.
4 Press the cable connectors into their mating connectors on the switch or I/O module until the cable connector is firmly seated.
5 Repeat step 1 on page 313 through step 4 for the remaining cables on this or other switches or I/O modules.

6 Dress and secure the cable bundle to provide appropriate strain relief and protection against bends and kinks.

Set up local management access, and configure the switch's software, by following the instructions in Performing Initial Management Tasks on page 313.

Performing Initial Management Tasks

When you set up a switch for the first time, you must connect to the console to access the switch and log in to perform initial security configuration.

Check http://ezcloudx.com/supportedhardware to see what switch models can be managed with ExtremeCloud ${ }^{\text {TM }}$. If your switch is entitled for management by ExtremeCloud, you can optionally use the installation instructions at http://ezcloudx.com/quickstart.

Otherwise, to perform normal setup and configuration, follow the instructions in these topics:

- Connecting a Switch to the Management Console on page 313
- Logging In for the First Time on page 314

You can also:

- Configuring the Switch's IP Address for the Management VLAN on page 315
- Configuring ExtremeXOS on the Switch on page 315

Connecting a Switch to the Management Console

Connect each switch to a central console to enable direct local management of the switch.

Each switch should be connected to a management console - a terminal or PC with terminal-emulation software. For all Extreme Networks switches, the terminal or PC must be configured with the following settings:

- Baud rate: 9600
- Data bits: 8
- Stop bit: 1
- Parity: None
- Flow control: XON/XOFF

For information about setting the proper values, refer to the documentation supplied with the terminal or PC.

Ensure that the connection between the switch and the management console is over either an RJ45-toserial adapter or a DB9 serial cable. Appropriate cables are available from your local supplier, or you can make your own. To ensure the electromagnetic compatibility of the unit, use only shielded serial cables. For connector pinouts associated with the console port, see Console Connector Pinouts on page 544.

Logging In for the First Time

After your switch has completed all power-on self-tests, it is operational. Before logging in, verify that the switch LEDs are on (solid green or blinking green) and that it is connected to a management console as described in Connecting a Switch to the Management Console on page 313.

To perform the initial login and complete initial configuration tasks, follow these steps.
1 Using a terminal emulator such as PuTTY or TeraTerm, connect to the switch using the serial port connection.

Be sure that your serial connection is set properly:

- Baud rate: 9600
- Data bits: 8
- Stop bit: 1

2 At the management console, press [Enter] one or more times until you see the login prompt.
3 At the login prompt, log in using the default user name admin.
For example:
login: admin

Note

For the initial password, simply press [Enter].

When you have successfully logged on to the system, the command line prompt displays the system name (for example, SummitX770\#) in its prompt. You are logged in with administrator privileges, which gives you access to all switch functions.
4 Respond to the screen prompts to configure the level of security you need.

Note

For more information about logging in to the switch and configuring switch management access, see the ExtremeXOS 16.2 User Guide.

5 Enter show version.
The switch serial number is displayed, as highlighted in the following example. Make a note of this number for future reference.

Transit. 3 \# show version
Switch : 800444-00-05 0723G-01234 Rev 5.0 BootROM:
Configure the switch's IP address for the management virtual LAN (VLAN (Virtual LAN)) by following the steps in Configuring the Switch's IP Address for the Management VLAN on page 315.

Configuring the Switch's IP Address for the Management VLAN

You can configure the switch's IP address for the management virtual LAN (VLAN).

Note

The management port is part of the mgmt VLAN. This VLAN membership cannot be changed.

Log in to the management console, connect to the switch, and follow these steps
1 Assign a name, IP address, and default subnetwork mask for the VLAN as shown in the following example.
configure vlan vlan_name ipaddress nn.nn.nn.nn 255.255.255.0
Your changes take effect immediately.
2 Enter save to save your configuration changes so that they will be in effect after the next system reboot.
Note
For more information about saving configuration changes, see the ExtremeXOS 16.2 User
Guide.

The configuration is saved to the configuration database of the switch.
Configure the ExtremeXOS software on the switch by following the steps in Configuring ExtremeXOS on the Switch on page 315.

Configuring ExtremeXOS on the Switch

To make a switch ready for use, ExtremeXOS must be downloaded and configured. To do this, log in to the management console, connect to the switch, and follow these steps.

Note

The management console can run on a terminal or a PC with terminal-emulation software. In these steps, the term $P C$ is used to refer to both.

[^5]4 When the download is complete, connect back to the switch through the management console.
Then connect an Ethernet cable from the switch's management port to a serial port on your PC. (Alternatively, you can connect to the PC using a serial-USB adapter.)

Note

To avoid an IP address conflict, you might need to change the IP address for the PC, for example to 10.10 .10 .10255 .255 .255 .0 .

5 Start a TFTP session using a program such as TFTPD64.
Set the TFTP Server's IP address option to match the one configured in step 4.
6 At the switch, download the new software to the switch, for example:
download image 10.10.10.10 summitX-22.2.1.5.xos
7 When you are asked whether you want to install the downloaded software, enter y.
8 When the download and installation have completed, use the reboot command to begin using the version just installed.

The switch is ready for use.

7
 Installing Summit External Power Supplies

```
Safety Considerations for Installing Power Supplies
Pre-installation Requirements
Installing an EPS-150DC External Power Module (with EPS-T2)
Installing an EPS-160 External Power Module (with EPS-T)
Installing an EPS-500 External Power Supply Unit
Installing an EPS-600LS External Power Module
Installing an EPS-C2 Power Supply
Installing an EPS-LD External Power Supply
Installing an STK-RPS-150PS Redundant Power Supply
Installing an RPS-500p Redundant Power Supply
```

Read the information in the following sections thoroughly before you attempt to install or remove an external power supply.

Safety Considerations for Installing Power Supplies

Only trained service personnel should perform service to Extreme Networks switches and their components.

Trained service personnel have read all related installation manuals, have the technical training and experience necessary to be aware of the hazards to which they are exposed in performing a task, and are aware of measures to minimize the danger to themselves or other persons.
Warning
Extreme Networks AC power supplies do not have switches for turning the unit on and off. To
disconnect the power to an Extreme Networks AC power supply, remove the wall plug from
the electrical outlet. Make sure that this connection is easily accessible.

Caution
Be sure that proper ESD controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch chassis and earth grounds.

Note
See Technical Specifications on page 424 for additional information regarding regulatory compliance certifications.

Pre-installation Requirements

You need the following tools and equipment to install an external power supply:

- \# 1 Phillips screwdriver
- Rack mount screws suitable for your organization's equipment rack
- Screwdriver suitable for use with your rack-mount screws
- AC power cord

An AC power cord is not included with the external power supply. Obtain a power supply cord that meets the requirements listed under Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

Note

When you connect an external power supply, consider all of the equipment that is connected to the power supply circuit to ensure that the circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.
The switch and each redundant power supply source should be plugged into separate branch circuits to provide redundancy.

Installing an EPS-150DC External Power Module (with EPS-T2)

The EPS-150DC power supply is a modular power supply for use in the EPS-T2 External Power System Tray.

The EPS-T2 is a rack-mountable chassis or tray that holds one or two EPS-150DC power supplies. Each EPS-150DC provides one-to-one redundancy to an attached Extreme Networks switch. You must install the EPS-150DC power supply in the EPS-T2 tray.

Warning

Always be sure that the DC circuit is de-energized before connecting or disconnecting the DC wiring harness at the DC power socket on the rear of the EPS-150DC unit, and before connecting or disconnecting the redundant power cord between the switch and the EPS-150DC unit.

Caution

Do not use the rack-mount brackets to suspend the EPS-T2 from under a table or desk, or to attach the EPS-T2 to a wall.

Note

For centralized DC power connection, this product is intended to be installed in restricted access locations (dedicated equipment rooms, equipment closets, or the like) in accordance with Articles 110-16, 110-17, and 110-18 of the National Electric Code, ANSI/NFPA 70.

Rack-mounting the EPS-T2

To install the EPS-T2 into a 19-inch rack:
1 Place the EPS-T2 upright on a secure surface, with the front facing you.
2 Remove the mounting bracket kit from the packaging.
3 Attach the mounting brackets:
a Place a mounting bracket over the mounting holes on one side of the EPS-T2 (see Figure 287).
b Insert the provided screws and fully tighten with a screwdriver.

Figure 287: Attaching the Mounting Bracket
C Attach the mounting bracket for the other side of the EPS-T2.
4 Slide the EPS-T2 into the rack and secure it using appropriate rack-mounting screws.

Installing the EPS-150DC Power Supply

Note
Install the EPS-T2 before you begin installing the EPS-150DC.

Warning

Always be sure that the DC circuit is de-energized before connecting or disconnecting the DC wiring harness at the DC power socket on the rear of the EPS-150DC unit, and before connecting or disconnecting the redundant power cord between the switch and the EPS-150DC unit.

To install an EPS-150DC unit, perform the following tasks in order:

1 Connecting the DC Wiring Harness to the DC Source Voltage on page 320
This task must be performed by a licensed, qualified electrician.
2 Installing an EPS-150DC Unit into an EPS-T2 on page 321
3 Connecting the DC Wiring Harness to the DC Power Socket on the EPS-150DC on page 321
4 Connecting the EPS-150DC to a Switch on page 322

Connecting the DC Wiring Harness to the DC Source Voltage

A three-wire, 6-foot long DC wiring harness (shown in Figure 288 on page 320) is included with the EPS-150DC unit. The DC wiring harness must be properly connected to the DC source voltage at your facility by a qualified electrician before the connector on the wiring harness can be attached to the DC power supply socket on the rear of the unit. See Technical Specifications on page 424 for information about connector pinouts and for DC power specifications to be used in connecting the wiring harness to the DC source voltage.

Warning

Wiring the EPS-150DC DC wiring harness to your facility's DC source voltage must be performed by a qualified, licensed electrician. After the wiring harness is connected to a permanent DC voltage source by a qualified, licensed electrician, you can remove, replace and maintain the ESP-150DC without further electrician assistance. However, always be sure that the DC circuit is de-energized before connecting or disconnecting the DC power connection at the rear of the EPS-150DC unit.

Caution

The DC wiring harness must be properly connected to a DC main circuit breaker or fuse rated no greater than 20 A.
Provide proper connection and strain relief on the DC wiring harness in accordance with all local and national electrical codes.

Figure 288: Three-wire Cable Harness

Note

Each wire on the harness has been properly marked for proper attachment to the DC power source. Leave these labels on each lead wire for future reference.

Installing an EPS-150DC Unit into an EPS-T2
Warning
The EPS-150DC unit and rack must be connected to protective earth ground.

To install an individual EPS-150DC unit into an EPS-T2:
1 Remove the EPS-150DC unit from the packing material.
2 Insert the EPS-150DC unit into the front of the EPS-T2.
3 Tighten the captive thumbscrews to secure the power supply to the tray.

Connecting the DC Wiring Harness to the DC Power Socket on the EPS-150DC

After the $D C$ wiring harness is connected to a permanent $D C$ voltage source by a qualified, licensed electrician, you can remove, replace, and maintain the EPS-150DC unit without further electrician assistance.

Warning

Always be sure that the $D C$ circuit is de-energized before connecting the $D C$ wiring harness to the DC power socket.

To connect the DC wiring harness to the EPS-150DC unit:
1 Verify that the DC power is turned off at the source.
2 Plug the DC cable connector into the DC power supply socket on the rear of the EPS-150DC unit.
The pins must align properly for the cable to completely connect. Do not force the cable into the socket until the keyway is aligned properly. Refer to Figure 288 on page 320 for the DC wiring harness connector and to Figure 289 for the DC power socket location on the rear of the EPS-150DC unit.

Figure 289: Connecting the Input Cable to the EPS-150DC Unit
3 Tighten the retainer nut on the connector until it is finger tight.

Connecting the EPS-150DC to a Switch

If you are connecting the EPS-150DC unit to a Summit X450a-48tDC switch, you must ground the switch before connecting power. For instructions on grounding the switch, see Grounding a Summit X250e or X450a DC-Powered Switch on page 282.

Warning

Always be sure that the DC circuit is de-energized before connecting the EPS-150DC to the switch.

One end of the EPS-150DC cord has a keyed connector to ensure correct alignment of the connector. The key is a plastic tab on the connector housing that fits into the EPS-150DC unit.

Figure 290: EPS-150DC Redundant Power Cord with Connector Key

To connect the EPS-150DC to a switch:
1 Verify that the DC power is turned off at the source.
2 Identify the keyed end of the redundant power cable.
3 Holding the keyed connector so that the side labeled "Top" is facing up, connect the EPS-150DC redundant power cable to the power supply unit (see Figure 291 on page 323).

4 Align and tighten the connector retaining screws to secure the cable connector to the power supply unit.
5 Connect the other end of the redundant power cord to the Extreme switch.
The connector fits the slot in only one direction.

6 Align and tighten the captive retaining screws to secure the cable connector to the switch.

Figure 291: Connecting an EPS-150DC Unit to a Switch
7 Energize the DC circuit.
The Power LED on the front of the EPS-150DC unit turns solid green to indicate that it is ready.

Installing an EPS-160 External Power Module (with EPS-T)

You can order the EPS-T chassis with one or two EPS-160 power supplies already installed. You can also order an additional power supply from your Extreme Networks reseller.

The EPS-T can be mounted in a rack or placed free-standing on a table.

Rack-mounting the EPS-T

Caution

Do not use the rack-mount brackets to suspend the EPS-T from under a table or desk, or to attach the EPS-T to a wall.

To rack-mount the EPS-T in a 19-inch rack:
1 Place the EPS-T upright on a stable surface, with the front facing you.
2 Remove the mounting bracket kit from the packaging.

3 Attach the mounting brackets as shown in Figure 292:
a Place a mounting bracket over the mounting holes on one side of the EPS-T (see the figure below).
b Insert the screws and fully tighten them using a screwdriver.

Figure 292: Attaching the Mounting Bracket
C Attach the mounting bracket for the other side of the EPS-T.
4 Slide the EPS-T into the rack and secure it using appropriate rack-mount screws.

Installing the EPS-160 Power Supply into an EPS-T

To install an EPS-160 power supply into the EPS-T, follow these steps:
1 Remove the EPS-160 power supply from the packing material.
2 Remove the cover plate from an empty slot on the EPS-T.
3 Insert the power supply into the empty slot on the EPS-T.
4 Tighten the captive thumbscrews to secure the power supply to the EPS-T.
Connect the EPS-160 power supply to the Summit switch, following the instructions in Connecting the EPS-160 Power Supply to the Switch on page 324.

Connecting the EPS-160 Power Supply to the Switch

One end of the EPS-160 redundant power cord has a keyed connector to ensure correct alignment of the connector.

The key is a plastic tab on the cord connector housing that fits into the EPS-160 unit.

Figure 293: Redundant Power Cord Connector

Caution

Always connect the redundant power supply cord before you attach the AC power cord to the EPS-160 power supply.

To connect the EPS-160 power supply to the switch:
1 Connect the keyed end of the redundant power supply cord to the EPS-160 power supply (see Figure 294).
2 Connect the other end of the redundant power supply cord to the Extreme switch (see Figure 294). This connector end can only be inserted into the switch with the end marked TOP facing up.
Note
If your switch was shipped with a metal cover plate over the redundant power input
connector, remove the cover.
Warning
The redundant power input connector on the rear of the switch contains high energy and
is a burn hazard. Use care when connecting the redundant power supply cord to the rear
of the switch.

Figure 294: Redundant Power Connections

3 Connect an appropriate AC power cord to the AC connector on each unit.

Note

An AC power cord is not provided with the EPS-160 unit. For information about selecting a power cord, see Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

The Power LED on the front of the EPS-160 should light solid green to indicate that it is ready.

Installing an EPS-500 External Power Supply Unit

You can position the EPS-500 facing either the front or the back of the rack.
For this reason, each unit has two sets of mounting holes on each side. Extreme Networks recommends that you position the EPS-500 unit so that the power output connectors of the EPS-500 unit are on the same side as the external connector on the connecting switch.

The EPS-500 unit can be mounted in a rack or placed free-standing on a table.

Note

An AC power cord is not provided with the EPS-500 unit. See Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543 for information about selecting a power cord.

Rack-mounting the EPS-500 Power Supply

Caution

When you install an EPS-500 in an equipment rack, make sure that the air vents are not restricted. Allow for elevated ambient operating temperatures when the unit is installed adjacent to other equipment. To avoid hazardous conditions due to uneven mechanical loading, make sure that the equipment is mounted properly in the equipment rack.

Caution

Do not use the rack-mount brackets to suspend the EPS-500 from under a table or desk, or to attach the unit to a wall.

To rack-mount an EPS-500 in a 19-inch rack, follow these steps:
1 Place the EPS-500 upright on a stable surface, with the side you want to face to the front of the switch toward you.
2 Remove the mounting bracket kit from the packaging.

3 Attach the mounting brackets as follows:
a Place a mounting bracket over the mounting holes on one side of the EPS-500 (see Figure 295).
b Insert the provided screws and fully tighten the screws using a screwdriver.

Figure 295: Attaching a Mounting Bracket
C Attach the mounting bracket on the opposite side of the EPS-500.
4 Slide the EPS-500 into the rack and secure it using appropriate rack-mount screws.

Note

We recommend that you position the EPS-500 so that the output connectors are on the same side as the external connector on the connecting switch. If you position the EPS-500 with the connectors facing in the opposite direction from the Summit switch connector, leave at least 1 U between the switch and the EPS-500 through which to slide the power cords. Do not route the power cords around the equipment rack.

Connecting the EPS-500 Power Supply

Caution

Do not attach the AC power cord to the EPS-500 unit until the unit is properly grounded at the electrical outlet and the redundant power cord is connected.

One end of the EPS-500 cord has a keyed connector to ensure correct alignment of the connector. The key is a plastic tab on the connector housing that fits into the EPS-500 unit.

Figure 296: EPS-500 Redundant Power Cord with Connector Key
1 Connect the keyed end of the EPS-500 redundant power cord to the power supply unit (see Connecting an EPS-500 Unit to a Switch).

2 Connect the other end of the redundant power cord to the Extreme switch.
The connector fits the slot in only one direction.

Note
If your switch was shipped with a metal cover plate over the redundant power input connector, remove the cover.

Warning

The redundant power input connector on the rear of the switch contains high energy and is a burn hazard. Use care when connecting the redundant power supply cord to the rear of the switch.

Figure 297: Connecting an EPS-500 Unit to a Switch
3 Connect an appropriate AC input power cord to the AC connector on the EPS-500 unit.
Note
An AC power cord is not provided with the EPS-500 unit. See Power Cord Requirements
for AC-Powered Switches and AC Power Supplies on page 543 for information about
selecting a power cord.

Caution

The EPS-500 unit does not have a switch for turning the unit on and off. Disconnect power to the EPS-500 unit by removing the plug from the electrical outlet. Be sure that this connection is where you can easily reach it.

4 Connect the other end of the AC power cord to the electrical outlet.
Be sure that the electrical outlet is properly grounded.
The Power LED on the front of the EPS-500 unit should light solid green to indicate that it is ready.

Installing an EPS-600LS External Power Module

Install one, two, or three EPS-600LS power modules (model no. 10913) in the EPS-C chassis (model no. 10912) to build an external redundant power system for a PoE (Power over Ethernet)-capable switch.

A redundant power cable shipped with the EPS-C chassis provides the connection between the external power system and the redundant power input connector on the back of the switch.
Note
An AC power cord is not provided with the EPS-600LS power module. See Power Cord
Requirements for AC-Powered Switches and AC Power Supplies on page 543 for information
about selecting a power cord.
Note
Each EPS-C chassis is shipped with a special redundant power supply cord for connection to
the Summit switch. Make sure that the EPS-C chassis is installed in the rack system before
installing an EPS-600LS unit.

Installing the EPS-C Chassis

Caution

Do not use the rack-mount brackets to suspend the EPS-C from under a table or desk, or to attach the EPS-C unit to a wall.

The EPS-C is intended for use only with a Summit X450e-48p or X250e-48p switch. You can install the EPS-C above or below the switch.

Figure 298: EPS-C and Summit Switch
To rack-mount the EPS-C in a 19-inch rack, follow these steps:
1 Place the EPS-C upright on a secure work surface.
2 Remove the mounting bracket kit from the packaging.

3 Attach the mounting brackets as follows:
a Place a rack-mount bracket over the mounting holes on one side of the unit.
b Insert the provided screws and tighten them securely.

Figure 299: Attaching the Mounting Bracket
C Attach the mounting bracket for the other side of the EPS-C.
4 Slide the EPS-C into the rack and secure it using appropriate rack-mount screws.
5 Connect the keyed end of the redundant power cord to the EPS-C (see Figure 300). Verify that the side of the connector marked TOP is facing up.

The key is a plastic tab on the cable connector housing that fits into the EPS-C to ensure correct alignment of the connector.
6 Connect the other end of the redundant power cord to the Summit $\times 450 e-48 p$ or $\times 250 e-48 p$ switch. Be sure that the side of the connector marked TOP is facing up (see Figure 300).

Figure 300: Installing the Redundant Power Cord

Installing the EPS-600LS Power Supply

To install an EPS-600LS unit into an EPS-C, follow these steps:
1 If necessary, remove a cover plate from a slot in the EPS-C.

2 Slide the EPS-600LS into an empty slot in the EPS-C.

Caution

Be sure that empty slots in the EPS-C chassis are always covered by a cover plate when
 not in use. The EPS-C is shipped with slots 2 and 3 covered and slot 1 open. Extreme Networks recommends that you populate slot 1 with an EPS-600LS unit first, but this is not required. You can install EPS-600LS units into any of the slots in the EPS-C. The installation sequence does not affect the performance of the power supply units, but empty slots must be covered at all times.

Figure 301: Installing the EPS-600LS Unit in the EPS-C Chassis
3 Slide the unit completely into the chassis until the front of the EPS-600LS is flush with the surface of the EPS-C (see Figure 302).

4 Align and tighten the captive screws to secure the EPS-600LS unit in place in the EPS-C (see Figure 302).

Figure 302: Securing the EPS-600LS to the EPS-C Chassis

5 Connect an appropriate AC power cord to the AC connector on the EPS-600LS unit (see Figure 303 on page 333).
Use the cable clip on the EPS-600LS unit to hold the AC power cord in place (see Figure 303).

Caution

The EPS-600LS unit does not have a switch for turning the unit on and off. Disconnect power to the EPS-600LS unit by removing the plug from the electrical outlet. Make sure that this connection is easily accessible to you.

Note
An AC power cord is not provided with the EPS-600LS unit. See Power Cord
Requirements for AC-Powered Switches and AC Power Supplies on page 543 for
information about selecting a power cord.

Figure 303: Connecting the AC Power Cord
6 Connect the other end of the AC power cord to the electrical outlet (see the figure above).
Be sure that the electrical outlet is properly grounded.
7 Repeat the procedure for each additional EPS-600LS unit.

Installing an EPS-C2 Power Supply

Install one, two, or three Summit 750 W AC power supplies (model 10931) in the EPS-C2 chassis (model 10936) to build an external redundant power system for one or more compatible switches

One redundant power cable is shipped with the EPS-C2 chassis to provide the connection between the external power system and the redundant power input connector on the back of a switch. Additional redundant power cables are available from Extreme Networks.

When installing an EPS-C2 chassis at the same time as a switch, install the components in the following order:

1 Install the switch into a rack.
2 Install the EPS-C2 chassis into a rack.
3 Install power supplies into the EPS-C2 chassis.
4 Attach the redundant power cable from the EPS-C2 chassis to the switch.
5 Attach an AC power cord to the switch's internal power supply.
Then plug it into an AC power source.
6 Connect AC power cords to the internal power supplies of the EPS-C2 chassis.
Then plug each cord into an AC power source.

Warning

Be sure to attach power to components in the order listed in this section. If you attach power out of the order listed, you can damage your equipment.

The following sections describe the specific steps for installing the EPS-C2 chassis.

Note

An AC power cord is not provided with the Summit 750 W AC power supply. See Selecting Power Supply Cords on page 413 for information about selecting a power cord.

Installing an EPS-C2 Chassis

Figure 304 shows an EPS-C2 chassis mounted above a switch in a rack.

Figure 304: EPS-C2 Power System Chassis and Switch
To mount the EPS-C2 chassis in a 19-inch rack, follow these steps:
1 Place the EPS-C2 chassis upright on a secure work surface.
2 Remove the mounting bracket kit from the packaging.

3 Attach the mounting brackets as follows:
a Place a mounting bracket over the mounting holes on one side of the EPS-C2 (see Figure 305).
b Insert the screws and fully tighten them using a screwdriver.

Figure 305: Attaching the Mounting Bracket to the EPS-C2 Chassis
C Attach the mounting bracket for the other side of the EPS-C2.
4 Slide the EPS-C2 into the rack and secure it using appropriate rack-mount screws. See Figure 306.

Figure 306: Sliding the EPS-C2 into the Rack and Securing it

Installing a Summit 750 W AC Power Supply into the EPS-C2

The EPS-C2 chassis is shipped with slots 2 and 3 covered and slot 1 open.
We recommend that you install a power supply first in slot 1 , but this is not required. You can install power supplies into any of the slots in the EPS-C2 chassis. The installation sequence does not affect the performance of the power supply units, but empty slots must be covered at all times.

Warning

To prevent an electrical hazard, make sure that the AC power cord is not connected to the power supply before you install the power supply in the power supply bay.

After the EPS-C2 has been installed in a rack, do the following to install a 750 W AC power supply in an EPS-C2 chassis:

1 If necessary, grasp the two tabs on either side of the slot cover and pull gently to remove it from the front of the EPS-C2 chassis.

Figure 307: Removing a Blank Panel from the EPS-C2 Chassis
2 Verify that the power supply is right side up (there is a sticker labeled "This Side Up").
3 Carefully slide the power supply all the way into the slot in the EPS-C2 chassis (see Figure 308).

4 Push the power supply in until the latch snaps into place.

Do not slam the power supply into the chassis.

Figure 308: Installing a 750 W AC Power Supply in an EPS-C2 Chassis

Note

If power supplies are not installed in all three slots, be sure to install a cover over each unoccupied slot. Unoccupied slots must always be covered to maintain proper system ventilation and EMI levels.

Repeat the procedure to install each additional power supply.

Connecting Redundant Power Cables for the EPS-C2 Chassis

The EPS-C2 chassis can use the following types of redundant power connectors:

- Five 2×7-pin connectors, shown in Figure 309, which connect the power supply to Summit X440 switches.

Figure 309: EPS-C2 2x7 Pin Redundant Power Cable with Connector Key Tab

- One 2x9-pin connector, shown in Figure 310, which connects the power supply to Summit X250e-48p and X450e-48p switches.

Warning

The 2×9 cable is not hot-pluggable. Do not attach a powered EPS-C2 to any Summit switch using the 2×9 connector.

Figure 310: EPS-C2 2x9 Pin Redundant Power Cable with Connector Key Tab
The redundant power cable has keyed ends. The key is a plastic tab on the cable connector housing to ensure correct alignment of the connector. The keyed ends of the 2×7 cable are not symmetrical; one end of the cable will fit into the EPS-C2 chassis and the other end will fit into the switch.

After the EPS-C2 has been installed in a rack and the power supplies have been installed, do the following to connect the redundant power cables:

1 Set the connector selection switch, located on the front of the EPS-C2 chassis, for either the 2×9 or the 2×7 connector.

See Figure 311.

Figure 311: EPS-C2 Connector Selector Switch
2 Connect the keyed end (for the 2×7 connector cable, the end with the tab offset from the edge of the connector pins) of the redundant power cord to the EPS-C2 chassis.

See Figure 312.
3 Verify that the side of the connector marked TOP is facing up.

4 Connect the other end of the redundant power cable (for the 2×7 connector cable, the end with the key flush with the edge of the connector pins) to the Summit switch.

```
See Figure 312.
```

Be sure that the side of the connector marked TOP is facing up.

Figure 312: Installing the Redundant Power Cord
5 Repeat the preceding steps to connect any additional redundant power cords.

Connecting the AC Power cord to the EPS-C2

After the redundant power cord is connected between the EPS-C2 and the switch, and an AC power cord to the internal power supply of the switch is attached to a power source, install the AC power cord to the power supplies in the EPS-C2 as follows:

1 If necessary, slide the plastic cord retainer farther away from the back of the power supply. See Figure 313.

Figure 313: Moving the Power Cord Retainer on the 750 W AC Power Supply
2 Connect the AC power cord to the input connector.

Figure 314: Connecting the Power Cord on the 750 W AC Power Supply

3 Open the clip and slip it over the barrel of the connector.

Figure 315: Attaching the Power Cord Retainer on the 750 W AC Power Supply
4 Snap the clip firmly around the connector.
5 Connect the other end of the power cord to an AC power outlet.

Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

Caution

Make sure that the AC power supply circuit is not overloaded. Use proper overcurrent protection, such as a circuit breaker, to prevent overcurrent conditions.

Installing an EPS-LD External Power Supply

The EPS-LD power supply can be mounted in a rack or placed free-standing on a table.
You can position the EPS-LD facing either the front or the back of the rack. For this reason, each unit has two sets of mounting holes on each side. Extreme Networks recommends that you position the EPS-LD so that the power output connectors on the EPS-LD unit are on the same side as the external connector on the connecting switch.

Caution

Do not use the rack-mount brackets to suspend the EPS-LD from under a table or desk, or to attach the unit to a wall.

Note
An AC power cord is not provided with the EPS-LD power supply. See Power Cord
Requirements for AC-Powered Switches and AC Power Supplies on page 543 for information about selecting a power cord.

Rack-mount the EPS-LD Power Supply

Note

When installing an EPS-LD in a rack, make sure air vents are not restricted. Allow for elevated ambient operating temperatures when the EPS-LD is installed adjacent to other equipment. Be sure you mount the equipment in the rack so that the load is evenly distributed.

To rack-mount each EPS-LD unit in a 19-inch rack:
1 Place the EPS-LD unit upright on a stable surface, with the side you want to face to the front of the switch toward you.
2 Remove the mounting bracket kit from the packaging.
3 Attach the mounting brackets as follows:
a Place a mounting bracket over the mounting holes on one side of the unit (see the figure below).
b Insert the provided screws and fully tighten them using a screwdriver.

Figure 316: Attaching the Mounting Bracket
C Attach the mounting bracket for the other side of the EPS-LD unit.
4 Slide the EPS-LD into the rack and secure it using appropriate rack-mount screws.

Note

We recommend that you position the EPS-LD so that the output connectors are on the same side as the external connector on the connecting switch. If you mount the EPS-LD with the connectors facing in the opposite direction from the Summit switch connector, leave at least 1 U between the switch and the EPS-LD through which to slide the power cords. Do not route the power cords around the equipment rack.

Connecting the EPS-LD to the Switch

Caution

Do not attach the AC power cord to the EPS-LD unit until the unit is properly grounded at the electrical outlet and the redundant power supply cord is connected.

One end of the EPS-LD cord has a keyed connector to ensure correct alignment of the connector. The key is a plastic tab on the cord connector housing that fits into the EPS-LD unit.

Figure 317: EPS-LD Connector with Key

To connect the EPS-LD to the switch:
1 Connect the keyed end of the cord to the power supply unit (see Figure 318 on page 343).
2 Align and tighten the captive retaining screws on the connector.
3 Connect the other end of the EPS-LD cord to the Extreme switch.
The connector fits in only one direction.
Note
If your switch was shipped with a metal cover plate over the redundant power input
connector, remove the cover.
Warning
The redundant power input connector on the rear of the switch contains high energy and
is a burn hazard. Use care when connecting the redundant power supply cord to the rear
of the switch.

Figure 318: Connecting an EPS-LD Unit to a Switch

Connecting the EPS-LD to Power

An AC input power cord is not provided with the EPS-LD.
Make sure the EPS-LD is connected to the switch before you connect the AC power.

Caution

The EPS-LD does not have a switch for turning the unit on and off. You disconnect power to the EPS-LD by removing the plug from the electrical outlet. Make sure that this connection is easily accessible.

To connect the EPS-LD to power:
1 Connect the AC input power cord to the AC connector on the EPS-LD.
2 Connect the other end of the AC cord to the electrical outlet.
a Make sure the electrical outlet is properly grounded.
The Power LED on the front of the EPS-LD lights solid green to indicate that it is ready.

Installing an STK-RPS-150PS Redundant Power Supply

You can install an STK-RPS-150PS as a stand alone unit or in one of the following RPS shelves:

- STK-RPS-150CH2, a two-slot shelf
- STK-RPS-150CH8, an eight-slot shelf

If you are installing the STK-RPS-150PS as a standalone unit, see Connecting the RPS Cable and AC Power Cord on page 348.

To install an STK-RPS-150PS in an RPS shelf, see Installing an STK-RPS-150PS in an RPS Shelf on page 345.

Required Tools

A flat-blade screwdriver is required to install the STK-RPS-150CH2 or STK-RPS-150CH8 shelf and STK-RPS-150PS power supplies.

Unpacking the Shelf and Power Supply

The shelf and the power supply are shipped separately. To unpack them, follow these steps:
1 Open the box and remove the packing material protecting the shelf or power supply.
2 Verify that the unit your ordered and a quick reference guide is included in the package.
3 Perform a visual inspection of the contents for any signs of physical damage. Contact Extreme Networks if there are any signs of damage.

Installing an STK-RPS-150PS in an RPS Shelf

Caution

Observe all ESD (electrostatic discharge) precautions when handling sensitive electronic equipment.

On the STK-RPS-150CH8 shelf, a cover plate will be in place over each power-supply slot.
To install the power supplies:
1 Place the RPS shelf on a sturdy flat surface where you plan to install power supplies.
2 Align the power supply with one of the slots, then slide the power supply forward until its front panel is flush against the RPS shelf front panel.

Figure 319: STK-RPS-150PS Installation in an STK-RPS-150CH2 Shelf

1 = STK-RPS-150CH2 shelf	3 = Shelf power supply slot
2 = STK-RPS-150PS power supply	4 = Captive screws (2)

Figure 320: STK-RPS-150PS Installation in an STK-RPS-150CH8 Shelf

1 = STK-RPS-150CH8 shelf	3 = Captive screws (2)
2 = STK-RPS-150PS power supply	4 = Shelf power supply slot

3 Fasten the power supply to the RPS shelf using the captive screws on the PSM front panel.
4 Repeat the two previous steps for each additional power supply.
5 Proceed to Installing the RPS Shelf into the Rack on page 346.

Installing the RPS Shelf into the Rack

To install an STK-RPS-150CH2 or STK-RPS-150CH8 into a 19-inch (48.3 cm) rack, you need the following:

- For the STK-RPS-150CH2: four customer-supplied screws to fasten the shelf to the rack rails.
- For the STK-RPS-150CH8: ten customer-supplied screws to fasten the shelf to the rack rails.

After installing the power supplies as described in Installing an STK-RPS-150PS in an RPS Shelf on page 345 , rack mount the RPS shelf as follows:

1 Refer to the installation guidelines (Guidelines for Rack Mount Installation).
2 Install the RPS shelf into the rack (Rack Mounting the RPS Shelf on page 347).
3 Connect the RPS cables and AC power cords of the power supplies (Connecting the RPS Cable and AC Power Cord on page 348).

Guidelines for Rack Mount Installation

The installation site must be within reach of the network cabling and meet the requirements listed below:

- Shelf placement must be close enough to connect the 6.6 -foot (2-meter) AC power cords from the power supplies to the AC power source.
- Up to two three-pronged power receptacles capable of delivering the current and voltage specified in STK-RPS-150PS and RPS Shelves Technical Specifications on page 523. Up to two AC outlets on independently-fused circuits must be within 6 feet (1.8 meters) from the installation site. If there is an AC power source failure, this will prevent the powering down of redundant power supplies due to a single source power failure.
- Power cords and type of outlet are dependent on the country. In the United States, one power cord with an NEMA 5-15P plug is provided with each STK-RPS-150PS.
- An ambient temperature of between $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ and $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ must be maintained at the installation site with fluctuations of less than $18^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ per hour.

Caution

To ensure proper ventilation and prevent overheating, leave a minimum clearance space of 3 inches (7.6 cm) at the front and rear of the unit.

Warning

Before installing the shelf into a rack, ensure that the rack can support the device(s) without compromising the stability of the rack. Otherwise, personal injury and/or equipment damage may result.

Rack Mounting the RPS Shelf
To install the RPS shelf into a 19-inch (48.3 cm) rack:
1 Position the RPS shelf between the vertical rails and align the mounting holes in the RPS shelf brackets with those in the rack frame.
2 Fasten the RPS shelf securely to the rails using the customer-supplied mounting screws (four for the STK-RPS-150CH2, ten for the STK-RPS-150CH8).

Figure 321: Fastening the STK-RPS-150CH2 to the Rack

1 = STK-RPS-150CH2 shelf	3 = Mounting screws
2 = Rails of rack	

Figure 322: Fastening the STK-RPS-150CH8 to the Rack

1 = STK-RPS-150CH8 shelf	3 = Mounting screws
2 = Rails of rack	

Connecting the RPS Cable and AC Power Cord

The redundant power supply is connected to a Summit switch using a 1 meter RPS cable.
To connect a redundant power supply, proceed as follows:

Note
No change in switch configuration is necessary for this installation.
1 Connect one end of the RPS cable to the redundant power supply connector at the rear of the RPS. Then connect the other end of the cable to the redundant power supply connector on the switch.

See the following figures.

Figure 323: Power Connectors on STK-RPS-150PS (rear view)

1 = Redundant power supply connector	$2=$ AC power connector

Figure 324: RPS and AC Power Cord Connections

1 = Switch	4 = Switch Redundant Power Supply connector (location varies depending upon switch)
2 = High speed RPS cable (1 meter)	5 = AC power cord (type varies depending on country)
3 = RPS Redundant Power Supply connector	6 = AC power outlet with ground connection (type varies depending on country)

2 Connect the AC power cord to the AC input power connector on the RPS shown in the figure above.
3 Plug the AC power cord into the main AC power outlet.
The green Power LED on the front of the RPS will illuminate to indicate a successful connection. On certain switches, an LED indicator on the switch will show that a redundant power supply is now in operation.

If the green power LED is not lit, proceed as follows:

- Check the AC power cord connection at the AC power source and make sure the power source is within specification.
- Check the AC power connection to the power supply.
- Swap the AC power cord with one that is known to work properly.

If the green LED remains off, contact Extreme Networks support.

Installing an RPS-500p Redundant Power Supply

You can install the RPS-500p power supply on a flat surface or in a 19-inch rack.

Caution

Observe all ESD precautions when handling sensitive electronic equipment.
Locate the RPS-500p within $6 \mathrm{ft}(1.8 \mathrm{~m})$ of its power source.

Only qualified personnel should install redundant power supply (RPS) units.

Installing an RPS-500p in a Rack

To install the RPS-500p power supply in a 19-inch rack, you need the following:

- Two rack-mounting brackets and mounting screws (rack-mounting kit) shipped with the power supply
- Four customer-supplied screws to attach the power supply to a standard 19-inch rack

Caution

Observe all ESD precautions when handling sensitive electronic equipment.

Caution

Before rack-mounting the device, ensure that the rack can support it without compromising stability. Otherwise, personal injury and/or equipment damage may result.

To install the RPS-500p in a rack, follow these steps.
1 Attach the rack-mounting brackets to the RPS-500p using the eight M3x6mm flathead screws shipped with the power supply.
See Figure 325.

Figure 325: Attaching the Rack-Mounting Brackets

$1=$ Rack-mounting brackets (2)	$2=$ M3×6mm flathead screws (8)

2 With the rack-mounting brackets attached, position the RPS-500p between the vertical rack rails of the 19-inch rack as shown in Figure 326.

Figure 326: Fastening the RPS-500p to the Rack

1 = RPS-500p	3 = Mounting screws (4)
2 = Rails of 19-inch rack	

3 Fasten the RPS-500p securely to the rack rails using four customer-supplied rack screws.
4 If you are installing the RPS-500p in a stacked configuration, repeat this procedure for each power supply.
5 Connect the RPS-500p to its power source.
See Connecting the RPS Cable and AC Power Cord to an RPS-500p on page 352.

Installing an RPS-500p on a Flat Surface

Caution

Observe all ESD precautions when handling sensitive electronic equipment.

When installing the RPS-500p power supply on a flat surface, we recommend installing the rubber feet to prevent the power supply from sliding.

To prepare the RPS-500p for use on a flat surface, follow these steps.
1 On a sturdy flat surface, lay the power supply on its top.
2 Remove the four rubber feet from their plastic bag in the shipping box.
3 Remove the protective strip from the back of one rubber foot and position it on a bottom corner of the power supply.
Press the rubber foot firmly into place.
Repeat this step for each of the remaining three rubber feet.

4 After installing the rubber feet, return the power supply to its upright position.
5 Connect the RPS-500p to its power source.
See Connecting the RPS Cable and AC Power Cord to an RPS-500p on page 352.

Connecting the RPS Cable and AC Power Cord to an RPS-500p

Connect the RPS-500p power supply to the PoE-compliant switch using the supplied RPS cable, as follows.

Caution

Observe all ESD precautions when handling sensitive electronic equipment.

1 Connect one end of the RPS cable to the Redundant Power Supply connector at the rear of the power supply.
2 Connect the other end of the RPS cable to the Redundant Power Supply connector on the switch. See Figure 327.

Figure 327: RPS Cable and AC Power Cord Connections for the RPS-500p

1 = PoE-compliant switch	4 = Redundant Power Supply connector on switch
2 = RPS cable	5 = AC power cord
3 = Redundant Power Supply connector on power supply	6 = AC power outlet with ground connection

Note
AC power cords and outlets vary depending on country.

3 Connect the AC power cord to the AC input power connector on the power supply.
4 Plug the AC power cord into the main AC power outlet.

The AC power LED on the front of the RPS-500p turns green to indicate that the connection was successful and the power supply is operating properly.

If the LED does not light properly, follow these steps to troubleshoot:

- Check the AC power cord connection at the AC power source and make sure the power source is within specification.
- Check the AC power connection to the power supply.
- Swap the AC power cord with one that is known to work properly.

8 Installing Port Option Cards and VIMs

Installing a Summit Port Option Card
 Installing an Option Card in Slot B of a Summit X460 Series Switch
 Installing a Versatile Interface Module in a Summit X460, X480, X650, or X670 Series Switch
 Installing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch

This chapter describes how to install Summit port option cards, versatile interface modules (VIMs), and stacking modules.

Note
Read the information in this chapter thoroughly before trying install or remove a Summit option card.

Installing a Summit Port Option Card

You need the following tools and equipment to install a Summit option card:

- ESD-preventive wrist strap
- \# 1 Phillips screwdriver
- Straight-tip screwdriver for the XGM3-2sf option card

Caution

Be sure that proper ESD controls are in use before switch maintenance is performed. This includes but is not limited to wrist straps that are grounded to the switch chassis and earth grounds.

Pluggable optical modules can become very hot after prolonged use. Take care when removing a pluggable optical module from the option card. If the pluggable optical module is too hot to touch, disengage the module and allow it to cool before removing it completely.
Summit port option cards are not hot-swappable. Disconnect power to the switch before installing or removing any option card. After the Summit port option card is installed in a compatible switch, you can hot-swap the pluggable optical modules. Use only optical modules approved by Extreme Networks.

Installing XGM and XGM2 Series Port Option Cards

All Summit XGM and XGM2 series port option cards are installed the same way. The instructions in this section apply to all option cards for the Summit X350, X450a, and X450e series switches.

To install a Summit XGM or XGM2 series port option card:

1 Disconnect the AC power and any redundant power supply from the Summit switch.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the equipment rack.
3 Remove the screws holding the filler panel over the option slot on the back of the switch (see the figure below).
4 Remove the filler panel and set it aside.
a Save the screws for re-use.

Figure 328: Option Slot Filler Panel
5 Align the sheet metal edges on the option card with the card guides in the switch housing.
6 Carefully slide the option card into the switch housing until the connectors engage and the card is flush with the back panel of the switch.

Figure 329: Installing a Summit Port Option Card (XGM-2xn Shown)
7 Using the screws from the cover plate, secure the option card to the back panel of the switch.
If you install only one pluggable optical module in the Summit option card, attach the appropriate cover plate or dust cover over the remaining open optical module slot or cage.

Note

Be sure that the switch option slot always has either an installed Summit option card or a faceplate over the opening. An open slot could divert air from the switch and cause overheating.

For information about installing or replacing the pluggable optical modules in the Summit option card, refer to the Extreme Networks Pluggable Transceivers Installation Guide.

Installing a Summit XGM3 Series Port Option Card

The XGM3 series port option cards can be installed only in a Summit X460 series switch; they are not mechanically compatible with any other Summit switch series.

To install an XGM3 series port option card:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 At the back of the switch, remove the blank cover over slot A.

Figure 330: Removing the Slot A Cover
3 Carefully slide the XGM3 series port option card all the way into the slot (see the figure below).
4 Align and fully tighten the captive retaining screws.

Figure 331: Installing an XGM3-2sf Port Option Card

Installing an Option Card in Slot B of a Summit X460 Series Switch

Slot B of a Summit X460 series switch accommodates either a Summit X460 stacking module or an XGM3SB-4sf port option card

In the Summit X460 series switch, a stacking module or XGM3SB-4sf option card can be installed in Slot B on the back panel of the switch.

To install an option card in Slot B, follow these steps.
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 At the back of the switch, remove the cover from Slot B.

Figure 332: Removing the Slot B Cover
3 Carefully slide the stacking module or option card all the way into the slot (see the figure below).

4 Align and fully tighten the captive retaining screws.

Figure 333: Installing a Stacking Module (SummitStack module shown)

Installing a Versatile Interface Module in a Summit X460, X480, X650, or X670 Series Switch

This section describes how to install versatile interface modules (VIMs).
You need the following tools and materials to install a VIM:

- ESD-preventive wrist strap
- \#1 Phillips screwdriver

Caution
Summit VIMs are not hot-swappable. Disconnect power to the switch before removing an installed VIM or installing a new VIM.

The installation procedure is the same for all VIMs attached to Summit X480, X650, and X670 series switches.

To install a VIM, follow these steps:
1 Attach an ESD-preventive wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.
2 Disconnect the switch power.

3 Remove the cover plate from the VIM slot:
a Remove the retaining screws at the top corners of the cover plate or module, and set the screws aside in a safe place.
b Save the retaining screws to secure the new module in the switch.
c Pull the cover plate away from the module slot.

Figure 334: Removing a VIM Cover Plate
4 Remove the new VIM from its anti-static packaging.
5 Install the VIM in the switch (see Figure 335 on page 359):
a Make sure the inserter/ejector levers are rotated down.
b Carefully slide the module into the switch until the inserter/ejector levers begin to rotate upward.
c Simultaneously rotate both levers upward to seat the module internal connectors.
d Insert and tighten the retaining screws you removed earlier.

Figure 335: Installing a Versatile Interface Module

Installing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch

This section describes how to install a versatile interface module (VIM) or a clock module in the rear slot of a Summit X460-G2 switch.

Note

Clock module ports are output ports. They are not to be used as input ports.

You need the following tools and materials to install a VIM or clock module:

- ESD-preventive wrist strap
- \#1 Phillips screwdriver (for clock module) or flat-bladed screwdriver (for all other VIM modules)

Caution

Summit VIMs and clock modules are not hot-swappable. Disconnect power to the switch before removing an installed VIM or clock module or installing a new VIM or clock module.

The installation procedure is the same for all $\mathrm{X} 460-\mathrm{G} 2 \mathrm{VIMs}$ and clock modules, with the exception that the VIMs use slotted retaining screws and the clock module uses Phillips retaining screws.

To install a versatile interface module or clock module, follow these steps:
1 Attach an ESD-preventive wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.
2 Disconnect the switch power.
3 Remove the cover plate from the VIM or clock module slot:
a Remove the retaining screws at the top corners of the slot cover plate, and set the screws aside in a safe place.
b Save the retaining screws to secure the new module in the switch.
c Pull the cover plate away from the module slot.

Figure 336: Removing a slot Cover Plate (VIM slot cover shown)
4 Remove the new VIM or clock module from its anti-static packaging.
5 Install the VIM or clock module in the switch:
a Carefully slide the module into the switch.
b Insert and tighten the retaining screws you removed in step 3. The clock module uses Phillips screws and the VIM modules use slotted screws.

Figure 337: Tighten Screws on the Inserted VIM Module
$1=$ VIM module retaining screw locations

Figure 338: Tighten Screws on the Inserted Clock Module
1 = clock module retaining screw locations

9

 Replacing AC Power Supplies```
Replacing a Summit 300 W AC Power Supply
Replacing a Summit 715 W AC Power Supply
Replacing a Summit 450 W or 550 W AC Power Supply
Replacing a Summit 750 W AC Power Supply
Replacing a Summit 850 W AC Power Supply
Replacing a Summit 1100 W AC Power Supply
Removing an EPS-LD or EPS-500 Power Supply
Removing an EPS-160 Power Supply from an EPS-T
Removing an EPS-600LS Power Module
Removing an STK-RPS-150PS Redundant Power Supply
```

This chapter describes how to replace AC power supplies in a Summit switch. It also describes how to remove EPS series AC redundant power supplies and the STK-RPS-150PS.

Note
Read the information in this chapter thoroughly before attempting to replace one of the listed Summit X650 components.

## Replacing a Summit 300 W AC Power Supply

The Summit 300 W AC power supplies are compatible with the Summit X460 series non-PoE (Power. over Ethernet) switches.

You need the following tools and materials to replace a Summit 300 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

An AC power cord is not included with a Summit AC power supply. You must obtain a power supply cord that meets the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch. To replace a Summit 300 W AC power supply:

1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply.

3 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.


Figure 339: Removing a Summit 300 W AC Power Supply
4 Carefully slide the power supply the rest of the way out of the switch.

## Caution

Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

## Note



If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

5 Verify that the replacement power supply is oriented the same way as the unit you removed.

6 Carefully slide the power supply all the way into the power supply bay.
See Figure 340


Figure 340: Installing a Summit 300 W AC Power Supply
7 Push the power supply in until the latch snaps into place.

## Caution

Do not slam the power supply into the switch.
8 Connect the AC power cord to the input connector on the power supply and rotate the wire clip into place over the power cord connector.
9 Connect the other end of the power cord to an AC power outlet.

## Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

## Replacing a Summit 715 W AC Power Supply

The Summit 715 W AC power supplies are compatible with the Summit X450-G2 and X460-G2 PoE series switches.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch.

You need the following tools and materials to replace a Summit 715 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a Summit 715 W AC power supply, follow these steps:
1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.

3 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

```
See Figure 341.
```



Figure 341: Removing a Summit 715 W AC Power Supply
4 Carefully slide the power supply the rest of the way out of the switch.


Caution
Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

## Note

If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

5 Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.
6 Carefully slide the power supply all the way into the power supply bay, as shown in Figure 342.

7 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.


Figure 342: Installing A Summit 715 W AC Power Supply
8 Connect the power cord to the power supply and to a grounded AC power outlet.

## Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

9 If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

## Replacing a Summit 450 W or 550 W AC Power Supply

Summit 450 W power supplies are compatible with switches that have front-to-back ventilation airflow. Summit 550 W power supplies are available for switches with either front-to-back or back-to-front airflow.

You need the following tools and materials to replace a 450 W or 550 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

An AC power cord is not included with the Summit AC power supply. You must obtain a power supply cord that meets the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch.


## Note

You cannot combine 450 W power supplies and 550 W power supplies in the same switch.

To replace a 450 W or 550 W AC power supply:
1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply.
3 For a Summit X670 series switch, note the direction of ventilation airflow, and verify that the power supply airflow direction is the same as that of the switch.

In a switch with front-to-back airflow, the fan modules are labeled Air Out.
In a switch with back-to-front, the fan modules are labeled Air In.
4 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

See Figure 343.


Figure 343: Removing a 450 W or 550 W AC Power Supply
5 Carefully slide the power supply the rest of the way out of the switch.


Caution
Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

## Note

If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

6 Verify that the replacement power supply is oriented the same way as the unit you removed.
For a Summit X670 series switch, verify that the airflow direction of the power supply matches the airflow direction of the switch.
7 Carefully slide the power supply all the way into the power supply bay.
See Figure 344.


Figure 344: Installing a 450 W or 550 W AC Power Supply
8 Push the power supply in until the latch snaps into place.


Caution
Do not slam the power supply into the switch.

9 Connect the power cord to the power supply and to a grounded AC power outlet.


## Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

10 If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

## Replacing a Summit 750 W AC Power Supply

The Summit 750 W AC power supply is compatible with the Summit $X 460$ series PoE-capable switches.
You need the following tools and materials to replace a Summit 750 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

An AC power cord is not included with a Summit AC power supply. You must obtain a power supply cord that meets the requirements listed in Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch.

To replace a Summit 750 W AC power supply, follow these steps:
1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply.
3 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.
See Figure 345.


Figure 345: Removing a Summit 750 W AC Power Supply
4 Carefully slide the power supply the rest of the way out of the switch.
Caution
Power supplies can become very hot during operation. Wear thermal protective gloves

when you remove a power supply from an operating switch. | Note |
| :--- |
| If you are not installing a replacement power supply, install a cover over the unoccupied |
| power supply bay. Unoccupied bays must always be covered to maintain proper system |
| ventilation and EMI levels. |

5 Verify that the replacement power supply is oriented the same way as the unit you removed.

6 Carefully slide the power supply all the way into the power supply bay. See Figure 346.


Figure 346: Installing a Summit 750 W AC Power Supply
7 Push the power supply in until the latch snaps into place.
Caution
Do not slam the power supply into the switch.

8 If necessary, slide the plastic cord retainer farther away from the back of the switch. See Figure 347.


Figure 347: Moving the Power Cord Retainer
9 Connect the AC power cord to the input connector.
See Figure 348.


Figure 348: Connecting the Power Cord

10 Open the clip and slip it over the barrel of the connector.
See Figure 349.


Figure 349: Attaching the Power Cord Retainer
11 Snap the clip firmly around the connector.
12 Connect the other end of the power cord to an AC power outlet.

## Replacing a Summit 850 W AC Power Supply

The Summit 850 W AC power supplies are compatible with the Summit X650 series switches. These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch.

You need the following tools and materials to replace a Summit 850 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a Summit 850 W AC power supply, follow these steps:
1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.

3 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.


Figure 350: Removing a Summit 850 W AC Power Supply from an X650 Switch
4 Carefully slide the power supply the rest of the way out of the switch.

## Caution

Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

## Note

If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

5 Verify that the replacement power supply is oriented the same way as the unit you removed.

6 Carefully slide the power supply all the way into the power supply bay, as shown in Figure 351.


Figure 351: Installing a Summit 850 W AC Power Supply in an X650 Switch
7 Push the power supply in until the latch snaps into place.


Caution
Do not slam the power supply into the switch.

8 Connect the power cord to the power supply and to a grounded AC power outlet.

## Warning

Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

9 If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

## Replacing a Summit 1100 W AC Power Supply

The Summit 1100 W AC power supplies are compatible with the Summit X450-G2 and X460-G2 PoE series switches.

These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit AC power supply without powering down the switch.

You need the following tools and materials to replace a Summit 1100 W AC power supply:

- Thermal protective gloves
- AC power cord, if you will not be re-using the cord from the removed power supply

To replace a Summit 1100 W AC power supply, follow these steps:
1 Disconnect the AC power cord from the wall outlet and from the power supply.
2 Note the orientation of the installed power supply, and the location of the latching tab at the right of the unit.

3 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

```
See Figure 352.
```



Figure 352: Removing a Summit 1100 W AC Power Supply
4 Carefully slide the power supply the rest of the way out of the switch.


Caution
Power supplies can become very hot during operation. Wear thermal protective gloves when you remove a power supply from an operating switch.

## Note

If you are not installing a replacement power supply, install a cover over the unoccupied power supply bay. Unoccupied bays must always be covered to maintain proper system ventilation and EMI levels.

5 Verify that the replacement power supply is oriented the same way as the unit you removed, and has the same airflow direction.

6 Carefully slide the power supply all the way into the power supply bay. See Figure 353.


Figure 353: Installing a Summit 1100 W AC Power Supply
7 Push the power supply in until the latch snaps into place.

## Caution

Do not slam the power supply into the switch.

8 Connect the power cord to the power supply and to a grounded AC power outlet.
Warning
Always be sure that the source outlet is properly grounded before plugging the AC power cord into the AC power supply.

9 If the power supply is equipped with a power cord retainer, use the retainer to secure the power cord to the power supply.

## Removing an EPS-LD or EPS-500 Power Supply

To remove an EPS-LD or EPS-500 power supply, follow these steps:
1 Disconnect the AC power by removing the plug from the wall.
2 Disconnect the AC power cord from the power supply.
3 Disconnect the redundant power cord that connects the switch to the power supply.
4 Remove the mounting screws securing the power supply to the rack.
5 Slide the power supply out of the rack.

## Removing an EPS-160 Power Supply from an EPS-T

To remove an EPS-160 power supply from an EPS-T, follow these steps:
1 Disconnect the AC power by removing the plug from the wall.

2 Disconnect the AC power cord from the EPS-160.
3 Disconnect the redundant power cord from the EPS-160.
4 Loosen the captive retaining screws on the front of the EPS-160 and slide it out of the EPS-T.

## Removing an EPS-600LS Power Module

Removing an EPS-600LS power module enables a graceful power transition from the external power supplies to the internal power supply.

To remove the power module, follow these steps:
1 Disconnect the AC power by removing the plug from the wall.
2 Release the cable clip securing the AC power cord to the EPS-600LS power module.
3 Disconnect the AC power cord from the EPS-600LS power module.
4 On the EPS-600LS power module, loosen the captive screws that secure it to the EPS-C chassis.
5 Slide the EPS-600LS power module out of the EPS-C chassis.

## Removing an STK-RPS-150PS Redundant Power Supply

## Caution

Observe all ESD (electrostatic discharge) precautions when handling sensitive electronic equipment.

To remove a power supply installed in an operating system, proceed as follows:
1 Unplug the AC power cord of the power supply from the AC power source first, then from the rear of the power supply.
2 Loosen the captive screws securing the power supply until it is released from the RPS shelf front panel.
3 Pull the power supply out and remove it from the RPS shelf.
4 Repeat steps 1 through 3 for each additional power supply you plan to remove.

# 10 Replacing DC Power Supplies 

Replacing a Summit 300 W DC Power Supply<br>Replacing a Summit 450 W or 550 W DC Power Supply<br>Replacing a Summit 850 W DC Power Supply<br>Removing an EPS-150DC Power Module from an EPS-T2 Tray

This chapter describes how to replace internal DC power supplies in a Summit X460, X460-G2, X480, X650, X670, X670-G2, or X770 series switch. These switches have two bays for hot-swappable power supplies. In a switch with a redundant power configuration, you can replace one Summit DC power supply without powering down the switch.

## Note

Read the information in this chapter thoroughly before attempting to replace one of the listed Summit X650 components.

See Replaceable Internal Power Supplies for Summit Switches on page 159 for a list of which internal DC power supplies are compatible with the switch you are using.

## Replacing a Summit 300 W DC Power Supply

Summit switches have two bays for hot-swappable power supplies. In a redundant power configuration, you can replace one Summit DC power supply without powering down the switch.

The following instructions apply to both of the 300 W DC power supplies (part numbers 10933 and 10944).

You need the following tools and materials to replace a Summit 300 W DC power supply:

- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- Thermal protective gloves (required for removal of a power supply)


## Warning

Be sure to disconnect all power cables before you disconnect the chassis ground wire.

## Removing a 300 W DC Power Supply

To remove an installed Summit 300 W DC power supply, follow these steps:
1 De-energize the DC circuit.

2 Disconnect the DC power cables:
a Pull the cover off the terminal block.
b Loosen the screws that secure the cable terminals to the terminal block.
c Slide the wires out from under the captive washers.

## Warning

Be sure to disconnect all power cables before you disconnect the chassis ground wire.

3 Disconnect the ground wire:
a Remove the screw that secures the ground wire to the power supply.
b Move the wire away from the power supply.
4 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

```
See Figure 354.
```



Figure 354: Removing a Summit 300 W DC Power Supply (Front-to-Back Model 10933 Shown)

5 Carefully slide the power supply the rest of the way out of the switch.

## Installing a Replacement 300 W DC Power Supply

To install a replacement Summit 300 W DC power supply, follow these steps:
1 Verify that the power supply is right side up.

2 Carefully slide the power supply all the way into the power supply bay.
See Figure 355.


Figure 355: Installing a Summit 300 W DC Power Supply (Front-to-Back Model 10933 Shown)

3 Push the power supply in until the latch snaps into place.


Caution
Do not slam the power supply into the switch.

4 Reconnect the ground wire as described in Connecting the Ground Wire to a 300 W DC Power Supply on page 380.

## Connecting the Ground Wire to a 300 W DC Power Supply

To connect the ground wire to the Summit 300 W DC power supply, follow these steps:
1 Verify that the DC circuit is de-energized.
2 Identify the grounding point on the front panel of the power supply.
See Figure 356.


Figure 356: Connecting the Ground Wire (Front-to-Back Model 10933 Shown)

| 1 = Grounding point | 2 = Ground wire |
| :--- | :--- |

3 Insert an M3.5 screw (provided) through the ring terminal on the ground and into the grounding point on the power supply.
4 Tighten the screw to $12.6 \mathrm{in}-\mathrm{lb}(1.4 \mathrm{Nm})$.
5 Connect the other end of the wire to a known reliable earth ground point at your site.
6 Connect the switch to the DC power source. See the instructions in Connecting DC Power Cables to a 300 W DC Power Supply on page 381.

## Connecting DC Power Cables to a 300 W DC Power Supply

Your Summit 300 W DC power supply (part no. 10933 or 10944) can connect to both +24 V and -48 V power sources. The connection instructions are different depending upon the power source voltage.

For connection instructions, refer to the appropriate topic:

- Connecting the DC Power Cables to a +24 V Source on page 381
- Connecting the DC Power Cables to a-48 V Source on page 382

Connecting the DC Power Cables to a +24 V Source
To connect the DC power cables for the 300 W Summit DC power supply (part no. 10933 or 10944) to a +24 V source, follow these steps:

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Verify that the ground wire is attached to the power supply.
See Connecting the Ground Wire to a 300 W DC Power Supply on page 380.
4 Slide the cover off the terminal block.
5 Connect the DC power input cables as follows:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.
b Slide the spade terminal of the negative wire ( -24 V ) under the captive square washer on the negative terminal (labeled -24 V ).
c Slide the spade terminal of the positive wire (+24 V) under the captive square washer on the positive terminal (labeled +24 V ).
See Figure 357.


Figure 357: Connecting the DC Power Cables: Part 1
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.24 \mathrm{~N} \mathrm{~m})$ as shown in Figure 358.


Figure 358: Connecting the DC Power Cables: Part 2
6 Slide the cover into place over the terminal block.
7 Energize the DC circuit.

## Connecting the DC Power Cables to a -48 V Source

To connect the DC power cables for the 300 W Summit DC power supply (part no. 10933 or 10944) to a -48 V source, follow these steps:

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Verify that the ground wire is attached to the power supply.
See Connecting the Ground Wire to a 300 W DC Power Supply on page 380.
4 Slide the cover off the terminal block.
5 Connect the DC power input cables as follows:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.
b Slide the spade terminal of the negative wire ( -48 V ) under the captive square washer on the negative terminal (labeled -48 V ).
c Slide the spade terminal of the positive wire (-48 V RTN) under the captive square washer on the positive terminal (labeled RTN).
See Figure 359.


Figure 359: Connecting the DC Power Cables: Part 1
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.24 \mathrm{Nm})$ as shown in Figure 360.


Figure 360: Connecting the DC Power Cables: Part 2
6 Slide the cover into place over the terminal block.
7 Energize the DC circuit.

## Replacing a Summit 450 W or 550 W DC Power Supply

Summit 450 W power supplies are compatible with Summit $X 480$ series switches and with Summit X670 series switches that have front-to-back ventilation airflow.

Summit 550 W power supplies are compatible with Summit X670, X670-G2, and X770 series switches. They are available in versions for switches with either front-to-back or back-to-front airflow.


## Note

You cannot combine power supplies of different wattages in the same switch.

You need the following tools and materials to replace a 450 W or 550 W DC power supply:

- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- Thermal protective gloves (required for removal of a power supply)


## Removing a 450 W or 550 W DC Power Supply

To remove an installed 450 W or 550 W DC power supply, follow these steps:

## Caution

The DC power supply may be hot to the touch; use thermal protective gloves when handling the power supply during removal.

1 De-energize the DC circuit.
2 Disconnect the DC power cables:
a Pull the cover off the terminal block.
b Loosen the screws that secure the cable terminals to the terminal block.
c Slide the wires out from under the captive washers.

## Warning

Be sure to disconnect all power cables before you disconnect the chassis ground wire.

3 Disconnect the ground wire as follows:
a Loosen the screw that secures the ground wire to the terminal block.
b Slide the wire out from under the captive washer.
4 Note the orientation of the installed power supply.
5 For a Summit X670 series switch, note the direction of ventilation airflow, and verify that the power supply airflow direction is the same as that of the switch.
In a switch with front-to-back airflow, the fan modules are labeled Air Out.
In a switch with back-to-front airflow, the fan modules are labeled Air In.

6 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.

```
See Figure 361.
```



Figure 361: Removing a Summit 450 W or 550 W Power Supply
7 Carefully slide the power supply the rest of the way out of the switch.
8 If a replacement power supply will not be installed, install a cover over the unoccupied power supply bay.


Note
Unoccupied power supply bays must always be covered to maintain proper system ventilation and EMI levels.

## Installing a Replacement 450 W or 550 W DC Power Supply

To install a replacement 450 W or 550 W DC power supply, follow these steps:
1 Verify that the replacement power supply is oriented the same as the unit you removed and that it has the same airflow direction as the switch.
2 Carefully slide the power supply all the way into the power supply bay.

```
See Figure 362.
```



Figure 362: Installing a 450 W or 550 W DC Power Supply

3 Push the power supply in until the latch snaps into place.


Caution
Do not slam the power supply into the switch.

4 Reconnect the ground wire as described in Connecting the Ground Wire to a 450 W or 550 W DC Power Supply on page 387.

## Connecting the Ground Wire to a 450 W or 550 W DC Power Supply

To connect the ground wire to the 450 W or 550 W DC power supply:

## Warning

Be sure to connect the chassis ground wire before you connect any power cables.
1 Verify that the DC circuit is de-energized.
2 Pull the cover off the terminal block.
3 Identify the grounding point on the front panel of the power supply.
See Figure 363.


Figure 363: Connecting the Ground Wire

| 1 = Grounding point | 2 = Ground wire |
| :--- | :--- |

4 Connect the ground wire to the grounding point as follows:
a Loosen the screw enough to allow the spade terminal to slide underneath the captive square washer (see Figure 364).
b Slide the spade terminal of the ground wire under the captive square washer.
c Tighten the screw to $7 \mathrm{in}-\mathrm{lb}(0.79 \mathrm{Nm})$.


Figure 364: Securing the Ground Wire
5 Connect the other end of the wire to a known reliable earth ground point at your site.
6 Connect the switch to the DC power source. See the instructions in Connecting DC Power Cables to a 450 W or 550 W DC Power Supply on page 388.

## Connecting DC Power Cables to a 450 W or 550 W DC Power Supply

The DC power connection at your facility must be made by a qualified electrician.
Warning
Always make sure that the DC circuit is de-energized before connecting or disconnecting the
DC power cables on the 450 W or 550 W DC power supply.

| Caution |
| :--- |
| Provide proper connection and strain relief on the DC power cables in accordance with all |
| local and national electrical codes. |

To connect the DC power cables to the 450 W or 550 W DC power supply, follow these steps:
1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Verify that the ground wire is attached to the power supply.
See Connecting the Ground Wire to a 450 W or 550 W DC Power Supply on page 387.

4 Connect the DC power input cables as follows:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer (see Figure 365 on page 390).
b Slide the spade terminal of the negative wire ( -48 V ) under the captive square washer on the negative terminal (labeled -).
c Slide the spade terminal of the positive wire (-48 V RTN) under the captive square washer on the positive terminal (labeled + ).


Figure 365: Connecting the DC Power Cables: Part 1
d Tighten both screws on the terminal block to $7 \mathrm{in}-\mathrm{lb}(0.79 \mathrm{Nm})$, as shown in Figure 366.


Figure 366: Connecting the DC Power Cables: Part 2
5 Snap the cover into place over the terminal block.
6 Energize the DC circuit.

## Replacing a Summit 850 W DC Power Supply

You need the following tools and materials to replace a Summit 850 W DC power supply:

- \#1 Phillips screwdriver
- Torque screwdriver and wrench or torque driver with attachments for tightening screws and nuts
- Thermal protective gloves (required for removal of a power supply)


## Warning

Be sure to disconnect all power cables before you disconnect the chassis ground wire.

## Removing an 850 W DC Power Supply

To remove an installed Summit 850 W DC power supply, follow these steps:
1 De-energize the DC circuit.
2 Disconnect the DC power cables:
a Pull the cover off the terminal block.
b Loosen the screws that secure the cable terminals to the terminal block.
c Slide the wires out from under the captive washers.

## Warning

Be sure to disconnect all power cables before you disconnect the chassis ground wire.

3 Disconnect the ground wire:
a Remove the screw that secures the ground wire to the power supply.
b Move the wire away from the power supply.
4 Push the latching tab toward the power supply handle and pull outward on the handle to disengage the power supply internal connectors.
See Figure 367.


Figure 367: Removing a Summit 850 W DC Power Supply
5 Carefully slide the power supply the rest of the way out of the switch.

## Installing a Replacement 850 W DC Power Supply

To install a replacement Summit 850 W DC power supply:
1 Verify that the power supply is right side up.
2 Carefully slide the power supply all the way into the power supply bay. See Figure 368.


Figure 368: Installing a Summit 850 W DC Power Supply
3 Push the power supply in until the latch snaps into place.

## Caution

Do not slam the power supply into the switch.

4 Reconnect the ground wire as described in Connecting the Ground Wire to an 850 W DC Power Supply on page 392.

## Connecting the Ground Wire to an 850 W DC Power Supply

To connect the ground wire to the Summit 850 W DC power supply, follow these steps:
1 Verify that the DC circuit is de-energized.
2 Identify the grounding point on the front panel of the power supply.
See Figure 369.


Figure 369: Connecting the Ground Wire

| 1 = Grounding point | 2 = Ground wire |
| :--- | :--- |

3 Insert an M3.5 screw (provided) through the ring terminal on the ground and into the grounding point on the power supply.
4 Tighten the screw to $12.6 \mathrm{in}-\mathrm{lb}(1.4 \mathrm{~N} \mathrm{~m})$.
5 Connect the other end of the wire to a known reliable earth ground point at your site.
6 Connect the switch to the DC power source. See the instructions in Connecting DC Power Cables to an 850 W DC Power Supply on page 393.

## Connecting DC Power Cables to an 850 W DC Power Supply

1 Verify that the DC circuit is de-energized.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
3 Verify that the ground wire is attached to the power supply.
See Connecting the Ground Wire to an 850 W DC Power Supply on page 392.
4 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
5 Connect the DC power input cables as follows:
a On each terminal, loosen the screw enough to allow the spade terminal to slide underneath the captive square washer.
b Slide the spade terminal of the negative wire $(-48 \mathrm{~V})$ under the captive square washer on the negative terminal (labeled -48 V ).
c Slide the spade terminal of the positive wire ( $-48 \vee$ RTN) under the captive square washer on the positive terminal (labeled RTN).


Figure 370: Connecting the DC Power Cables: Part 1
d Tighten both screws on the terminal block to $11 \mathrm{in}-\mathrm{lb}(1.24 \mathrm{Nm})$.

## See Figure 371.



Figure 371: Connecting the DC Power Cables: Part 2
6 Slide the cover into place over the terminal block.
7 Energize the DC circuit.

## Removing an EPS-150DC Power Module from an EPS-T2 Tray

## Warning

Always be sure that the DC circuit is de-energized before disconnecting any cables and attempting to remove an EPS-150DC power module.

## Warning

Removing the DC wiring harness from your facility's DC source voltage must be done by a qualified, licensed electrician.

To disconnect and remove an EPS-150DC power module, follow these steps:
1 Attach an ESD-preventive strap to your bare wrist and connect the metal end to the an appropriate ground point on the equipment rack.
2 De-energize the DC circuit.
3 At the rear of the unit, loosen the retainer nut on the DC power connector.
4 Unplug the DC connector from the DC power supply socket on the rear of the unit.
Power has now been disconnected from the unit.
5 At each end of the redundant power cable, unscrew the captive retaining screws on the power connector.
6 Disconnect the redundant power cable from the switch and the EPS-150DC unit.
7 Loosen the thumbscrews on the front of the EPS-150DC unit until they are completely free of the EPS-T2 tray.
8 Slide the EPS-150DC unit out of the tray.

This chapter describes how to replace fan modules in the following switches: X450-G2, X460, X460-G2, X480, X650, X670, X670-G2, and X770.

Illustrations in this chapter show switches that might not be identical to the ones you are using. However, the procedure for replacing a fan module is the same for all Summit switches.


Note
Read all of the information in this chapter thoroughly before attempting to replace a fan module.

## Pre-Installation Requirements

You need a 1/4-inch flat-blade screwdriver to replace a fan module.

## Caution

Be sure to finish the replacement procedure promptly. The switch could overheat if left without cooling for an extended period.

## Airflow Direction Requirements

- The air flows from front to back. In these switch models, the fan modules are labeled Air Out.
- The air flows from back to front. In these switch models, the fan modules are labeled Air In.

All installed fan modules must blow air in the same direction and must match the airflow direction of the installed power supplies.

## Replacing a Fan Module

To replace the fan module in a switch, do the following:
1 Completely loosen the captive retaining screws on the fan module.
On most switch models, the fan module has two retaining screws at the bottom corners of the module, as shown in Figure 372.

On some switch models, the fan module has a single retaining screw at the top right corner of the module.

2 Slide the fan module out of the switch and set it aside.


Figure 372: Removing a Fan Module
3 Verify that the airflow direction on the replacement fan module matches that of the installed fan modules.
Fans with front-to-back airflow are labeled Air Out.
Fans with back-to-front airflow are labeled Air In.
4 Carefully slide the replacement fan module into the switch.


Figure 373: Installing a Fan Module
5 Align and fully tighten the captive retaining screws.

## 12 Replacing Port Option Cards and VIMs

## Replacing a Stacking Module or Option Card in Slot B of a Summit X460 Series Switch Replacing an XGM3/XGM3S Series Port Option Card in a Summit X460 Series Switch Replacing a Versatile Interface Module (VIM) in a Summit X480, X650 or X670 Series Switch <br> Replacing an XGM or XGM2 Series Port Option Card <br> Replacing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch

This chapter describes how to replace port option cards, versatile interface modules (VIMs), and stacking modules in a Summit series switch.

## Note

Read the information in this chapter thoroughly before attempting to replace one of the listed Summit X650 components.

## Replacing a Stacking Module or Option Card in Slot B of a Summit X460 Series Switch

Slot B on the back of a Summit X460 series switch accommodates a SummitStack or a SummitStackV80 stacking module, or an XGM3SB-4sf port option card. The replacement process is the same for either of these options.

You need the following tools to replace a stacking module:

- ESD-preventive wrist strap
- Screwdriver

To replace a stacking module or option card in Slot B:
1 Attach an ESD-preventive wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.

2 Completely loosen the captive retaining screws and slide the installed option card or stacking module out of the switch.


Figure 374: Removing a SummitStack Module
3 Carefully slide the replacement module or card into the switch (see Figure 375).
4 Align and tighten the captive retaining screws.


Figure 375: Installing a SummitStack Module

## Replacing an XGM3/XGM3S Series Port Option Card in a Summit X460 Series Switch



Note
After you replace an XGM3-2sf port option card, you must reboot the switch before the ports on the card will become operational.

To replace an XGM3/XGM3S series port option card:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 Loosen the captive retaining screws on the option card until they are completely loose (see Figure 376).

3 Carefully slide the option card out of the slot.


Figure 376: Removing an XGM3-2sf Port Option Card
4 Carefully slide the replacement option card into the switch.


Figure 377: Installing an XGM3-2sf Port Option Card
5 Align and tighten the captive retaining screws.

## Replacing a Versatile Interface Module (VIM) in a Summit X480, X650 or X670 Series Switch

You need the following tools and materials to replace a VIM:

- ESD-preventive wrist strap
- \#2 Phillips screwdriver

Caution
Summit VIMs are not hot-swappable. Disconnect power to the switch before removing an installed VIM. After a VIM is installed in a compatible switch, you can hot-swap the installed SFP, SFP+, and QSFP+ modules. Use only SFP, SFP+, and QSFP+ modules approved by Extreme Networks.

## Note



VIM1 modules must be installed in Summit X 650 series switches, VIM2 modules must be installed in Summit X480 series switches, and VIM4 modules must be installed in Summit X670 series switches. VIM3 modules can be installed in $X 480$, $X 650$, and $X 670$ series switches. AVIM will not operate if it is installed in the wrong switch series.

To replace a VIM, follow these steps:
1 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the rack.
2 Disconnect the switch power.
3 Remove the installed VIM (see Figure 378 on page 401):
a Remove the retaining screws at the top corners of the module, and set the screws aside in a safe place.
b Save the retaining screws to secure the new module in the switch.
c Rotate the inserter/extractor levers downward to disconnect the internal module connectors.
d Carefully slide the module out of the switch and set it on an anti-static surface.


Figure 378: Removing a VIM (VIM1-SummitStack Module Shown)
4 Remove the replacement VIM from its anti-static packaging.

5 Install the replacement VIM in the switch (see Figure 379 on page 402):
a Make sure the inserter/ejector levers are rotated down.
b Carefully slide the module into the switch until the inserter/ejector levers begin to rotate upward.
c Simultaneously rotate both levers upward to seat the module internal connectors.
d Insert and tighten the retaining screws you removed earlier.


Figure 379: Installing a VIM

## Replacing an XGM or XGM2 Series Port Option Card

This section describes how to replace XGM and XGM2 series port option cards in Summit X350, X450a, and X 450 e series switches.

## Caution

Pluggable optical modules can become very hot after prolonged use. Take care when removing a pluggable optical module from the option card. If the pluggable optical module is too hot to touch, disengage the module and allow it to cool before removing it completely.

## Caution



Summit port option cards are not hot-swappable. Disconnect power to the switch before installing or removing a Summit XGM or XGM2 series option card. After the Summit port option card is installed in a compatible switch, you can hot-swap pluggable optical modules. Use only optical modules approved by Extreme Networks.

To replace a port option card, follow these steps:
1 Disconnect the AC power and any redundant power supply from the Summit switch.
2 Attach an ESD-preventive wrist strap to your bare wrist and connect the metal end to an appropriate ground point on the equipment rack.
3 Remove the screws that secure the option card to the switch.
a Save the screws for re-use.
4 Pull the option card out of the switch and set it on an ESD-preventive surface.
5 Align the sheet metal edges on the new option card with the card guides in the switch housing.

6 Carefully slide the option card into the switch housing until the connectors engage and the card is flush with the back panel of the switch.


Figure 380: Installing a Summit Port Option Card (XGM-2xn Shown)
7 Use the screws you removed from the old option card to secure the new option card to the back panel of the switch.

## Note



If you remove a Summit option card and do not install a replacement, you must install a faceplate over the opening. An open slot could divert air from the switch and cause overheating.

## Replacing a Versatile Interface Module or Clock Module in a Summit X460-G2 Series Switch

This section describes how to replace versatile interface modules (VIMs) or a clock module in the rear slot of a Summit X460-G2 switch..


Note
Clock module ports are output ports; clock module ports are not to be used as input ports.

You need the following tools and materials to install a VIM or clock module:

- ESD-preventive wrist strap
- \#1 Phillips screwdriver (for clock module) or flat-bladed screwdriver (for all other VIM modules)

Caution
Summit VIMs and clock modules are not hot-swappable. Disconnect power to the switch before removing an installed VIM or clock module or installing a new VIM or clock module.

The replacement procedure is the same for all $\mathrm{X} 460-\mathrm{G} 2 \mathrm{VIMs}$ and clock modules, with the exception that the VIMs use slotted retaining screws and the clock module uses Phillips retaining screws.

To replace a versatile interface module or clock module:
1 Attach an ESD-preventive wrist strap to your wrist and connect the metal end to an appropriate ground point on the rack.

2 Disconnect the switch power.
3 Remove the existing VIM or clock module:
a Remove the retaining screws holding the existing module in place.
b Save the retaining screws to secure the new module in the switch.
c Pull the old module out of the module slot.
4 Remove the new VIM or clock module from its anti-static packaging.
5 Install the VIM or clock module in the switch:
a Carefully slide the module into the switch.
b Insert and tighten the retaining screws you removed in step 3. The clock module uses Phillips screws and the VIM modules use slotted screws.


Figure 381: Tighten Screws on the Inserted VIM Module
$1=$ VIM module retaining screw locations
(1)


Figure 382: Tighten Screws on the Inserted Clock Module
1= clock module retaining screw locations

## Removing an AC Power Supply <br> Removing a DC Power Supply <br> Removing a Switch from a Rack

Removing a switch from service is a two-step process:
1 Disconnect the switch from its power source, following these steps as applicable:

- Disconnect and remove the switch's removable AC power supply. See Removing an AC Power Supply on page 405.
- Disconnect and remove the switch's removable DC power supply. See Removing a DC Power Supply on page 406.
- Disconnect the switch from its redundant power supply.

2 Remove the switch from the rack, following the steps in Removing a Switch from a Rack on page 407.

## Note

Read the information in this chapter thoroughly before you attempt to remove a switch.

## Removing an AC Power Supply

To remove an AC power supply unit (PSU) from a switch, follow these steps:
1 Disconnect the AC power cord from the wall outlet and from the power input connector on the power supply.

2 Push the latching tab to the right as you pull outward on the handle to disengage the power supply internal connectors.


Figure 383: Removing an AC Power Supply
3 Carefully slide the power supply the rest of the way out of the switch.

## Removing a DC Power Supply

To remove a DC power supply unit (PSU) from a switch, follow these steps:
1 De-energize the DC circuit.

## Warning

Removing the DC wiring harness from your facility's DC source voltage must be performed by a qualified, licensed electrician.

2 Disconnect the DC power cables as follows:
a Slide the cover off the terminal block.
b Loosen the screws that secure the cable terminals to the terminal block.
c Slide the wires out from under the captive washers.
3 Disconnect the ground wire as follows:
a Remove the screw that secures the ground wire to the power supply.
b Move the wire away from the power supply.

4 Push the latching tab to the left as you pull outward on the handle to disengage the power supply internal connectors.


Figure 384: Removing a DC Power Supply
5 Carefully slide the power supply the rest of the way out of the switch.

## Removing a Switch from a Rack

Before removing a switch from a rack, verify that:

- All removable power supplies have been removed. See Removing an AC Power Supply on page 405 or Removing a DC Power Supply on page 406.
- The switch has been disconnected from any redundant power supplies.
- The switch has been disconnected from all other sources of electrical power.



## Note

Read the following steps thoroughly before you attempt to remove a switch from a rack.
To remove a switch from a rack, follow these steps:
1 Support the switch while you remove the rack-mounting screws that hold the front mounting brackets in place against the rack posts.
2 Remove the switch from the rack.

- For two-post installations, carefully slide the switch out of the rack.
- For four-post installations, carefully slide the switch forward out of the cabinet and off the rear mounting brackets.

See the following figures.


Figure 385: Removing a Front-Mounted Switch from a Two-Post Rack


Figure 386: Removing the Switch from a Four-Post Rack
3 Place the switch on a secure, flat surface.
4 Using a \#1 Phillips screwdriver, remove the front mounting brackets from the sides of the switch.
5 For four-post installations, remove the rear mounting brackets from the rear rack posts.

## A safety Information

```
Considerations Before Installing
General Safety Precautions
Maintenance Safety
Cable Routing for LAN Systems
Installing Power Supply Units and Connecting Power
Selecting Power Supply Cords
Battery Replacement and Disposal
Battery Warning - Taiwan
Fiber Optic Ports and Optical Safety
Sicherheitshinweise
Überlegungen vor der Installation
Allgemeine Sicherheitshinweise
Sicherheit bei Wartungsarbeiten
Kabelverlegung für LAN-Systeme
Installation der Netzteile und Netzanschluss
Auswahl der Netzkabel
Wechseln und Entsorgen der Batterie
LWL-Ports und optische Sicherheit
Konformität von GBIC, SFP (Mini-GBIC), QSFP+, XENPAK und XFP
Mögliche Netzanschlussgerät- und Lüftereinsatz-Konfigurationen für X770-32a
```


## Warning



Read the following safety information thoroughly before installing Extreme Networks products. Failure to follow this safety information can lead to personal injury or damage to the equipment.

Only trained and qualified service personnel (as defined in IEC 60950-1 and AS/NZS 3260) should install, replace, or perform service to Extreme Networks switches and their components. Qualified personnel have read all related installation manuals, have the technical training and experience necessary to be aware of the hazards to which they are exposed in performing a task, and are aware of measures to minimize the danger to themselves or other persons.

If you are in the USA, install the system in accordance with the U.S. National Electrical Code (NEC).

## Considerations Before Installing

Consider the following items before you install equipment.

- For equipment designed to operate in a typical Telco environment that is environmentally controlled, choose a site that has the following characteristics:
- Temperature-controlled and humidity-controlled, such that the maximum ambient room temperature shall not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
- Clean and free from airborne materials that can conduct electricity.
- Well ventilated and away from sources of heat including direct sunlight.
- Away from sources of vibration or physical shock.
- Isolated from strong electromagnetic fields produced by electrical devices.
- For equipment designed to be installed in environments that are not environmentally controlled, such as outdoor enclosures, see the product data sheet or for environmental conditions, temperature, and humidity.
- Establish at least 3 inches clearance on all sides for effective ventilation. Do not obstruct the air intake vent on the front, side, or rear ventilation grills. Locate the system away from heat sources.
- Make sure that your equipment is placed in an area that accommodates the power consumption and component heat dissipation specifications.
- Make sure that your power supplies meet the site DC power or AC power requirements of all the network equipment.
- Racks for Extreme Networks equipment must be permanently attached to the floor. Failure to stabilize the rack can cause the rack to tip over when the equipment is removed for servicing.
- Do not operate the system unless all modules, faceplates, front covers, and rear covers are in place. Blank faceplates and cover panels are required for the following functions:
- Preventing exposure to hazardous voltages and currents inside the equipment
- Containing electromagnetic interference (EMI) that might disrupt other equipment
- Directing the flow of cooling air through the equipment
- Ultimate disposal of this product should be handled according to all national laws and regulations.


## General Safety Precautions

Follow these guidelines:

- Do not try to lift objects that you think are too heavy for you.
- When you install equipment in a rack, load heavier devices in the lower half of the rack first to avoid making the rack top-heavy.
- Use only tools and equipment that are in perfect condition. Do not use equipment with visible damage.
- Route cables in a manner that prevents possible damage to the cables and avoids causing accidents, such as tripping.
- Do not place a monitor or other objects on top of the equipment. The chassis cover is not designed to support weight.
- To reduce the risk of fire, use only \#26 AWG or larger telecommunications line cord. Use only copper conductors.
- Do not work on the system or connect or disconnect cables during periods of lightning activity.
- This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor.


## Maintenance Safety

When you perform maintenance procedures on Extreme Networks equipment, follow these recommendations:

- Use only authorized accessories or components approved for use with this system. Failure to follow these instructions may damage the equipment or violate required safety and EMC (electromagnetic compatibility) regulations.
- This system contains no customer serviceable components. Do not attempt to repair a chassis, power supply, module, or other component. In the event of failure, return the defective unit to Extreme Networks for repair or replacement, unless otherwise instructed by an Extreme Networks representative.
- To remove power from the system, you must unplug all power cords from wall outlets. The power cord is the disconnect device to the main power source.
- Disconnect all power cords before working near power supplies, unless otherwise instructed by a product-specific maintenance procedure.
- Replace a power cord immediately if it shows any signs of damage.
- When you work with optical devices, power supplies, or other modular accessories, put on an ESDpreventive wrist strap to reduce the risk of electronic damage to the equipment. Connect the other end of the strap to an appropriate grounding point on the equipment rack or to an ESD jack on the chassis if one is provided. Leave the ESD-preventive wrist strap permanently attached to the equipment rack or chassis so that it is always available when you need to handle components that are sensitive to ESD.
- Install all cables in a manner that avoids strain. Use tie wraps or other strain relief devices.


## Cable Routing for LAN Systems

Extreme Networks equipment meets the requirements for LAN system equipment.

LAN systems are designed for intra-building installations; that is, cable runs between devices must be in the same building as the connected units, except under the conditions listed in the next paragraph.

As allowed in the USA by the National Electrical Code (NEC), this equipment can be connected between buildings if any one of the following conditions is true:

- Cable runs between buildings are less than 140 feet long.
- Cable runs between buildings are directly buried.
- Cable runs between buildings are in an underground conduit, where a continuous metallic cable shield or a continuous metallic conduit containing the cable is bonded to each building grounding electrode system.


## Caution

Failure to follow these requirements for cable routing conditions may expose the user to electrical shock and expose the unit to damage that can cause errors.


#### Abstract

Warning The Ethernet ports of the equipment and its sub-assemblies are suitable only for intrabuilding connections (within the same building) or for connections to unexposed wiring or cabling. (See the conditions listed above.) The Ethernet ports of this equipment or its subassemblies must not be metallically connected to interfaces that connect to the outside plant (OSP) or its wiring. Ethernet interfaces are designed for use only as intra-building interfaces (described as Type 2 or Type 4 ports in GR-1089-CORE, Issue 6) and require isolation from the exposed OSP wiring. The addition of Primary Protectors is not sufficient protection to connect these interfaces metallically to OSP wiring.

This warning does not apply to T1/E1 ports because T1/E1 ports have built-in isolation and surge protection that allows them to be connected to OSP wiring.


## Installing Power Supply Units and Connecting Power

For the ratings and power input requirements of each power supply unit, see Technical Specifications on page 424 or the data sheet for the power supply at www.extremenetworks.com.

## Warning

Be sure to satisfy the requirements listed in this section when you install Extreme Networks power supplies or connect power.

When you install any power supply:

- Do not use excessive force when you insert a power supply into the bay.
- Do not attempt to open the power supply enclosure for any reason; the power supply does not contain user-serviceable parts. In the event of failure, return the defective power supply to Extreme Networks for repair or replacement.
- Do not put your hand into an open power supply bay when a power supply is not present.
- Before you work on equipment that is connected to power lines, remove all jewelry, including watches. Metal objects heat up when they are connected to power and ground and can cause serious burns or weld the metal object to the terminals.
- An electrical arc can occur when you connect or disconnect the power with power applied. This could cause an explosion in hazardous area installations. Be sure that power is removed from the device.
- When you install or replace equipment, always make the ground connection first and disconnect the ground connection last.

When you install AC power supplies:

- For switches with field-replaceable power supplies, do not connect the power supply to an electrical source when the power supply is not installed in the switch; doing so would expose a hazardous energy and poses a potential shock and fire hazard.
- Plug power supplies only into properly grounded electrical outlets to help prevent electrical shock and to comply with international safety standards.
- Use only power cords that are certified for use within the country of use. Do not attempt to modify AC power cords.
- Make sure that the voltage and frequency of your power outlet match the system electrical ratings for the equipment. The building and/or power source must provide overload protection.
- Use a surge suppressor, line conditioner, or uninterruptible power supply to protect the system from momentary increases or decreases in electrical power.
- When multiple power supplies are used with a system, connect each power supply to a different, independent overcurrent protection device, such as a circuit breaker. If a single power source fails, it will affect only that power supply to which it is connected. See the data sheet of the power supply for proper sizing of the circuit breaker.
- Extreme Networks AC power supplies do not have switches for turning the unit on and off. Remove all wall plugs from the electrical outlets to disconnect the power. Make sure that these connections are easily accessible.

When you install DC power supplies or connect DC power:

- Making the connection to your facility DC source voltage must be performed by a qualified, licensed electrician.
- Extreme Networks DC power supplies do not have switches for turning the unit on and off. Make sure that the DC circuit is de-energized before connecting or disconnecting the DC power cord at the DC input power socket.
- Do not connect a DC power supply to the DC source power when the power supply is not installed in the chassis; doing so would expose a hazardous energy and poses a potential shock and fire hazard.
- Connect the system or power supply only to a DC power source that complies with the safety extralow voltage (SELV) requirements in IEC 60950-based safety standards.
- DC-powered equipment must be installed in a restricted-access area to ensure that only trained and qualified service personnel have access to the equipment. A restricted-access area can be entered only through the use of a special tool, lock and key, or other means of security.


## Note

Because building codes vary worldwide, Extreme Networks strongly recommends that you consult an electrical contractor to ensure proper equipment grounding and power distribution for your specific installation and country.

## Warning

Extreme Networks power supplies do not have switches for turning the unit on and off. Disconnect all power cords to remove power from the device. Make sure that these connections are easily accessible.
Extreme Networks alimentations n'ont pas de contact pour mettre l'appareil sous et hors tension. Débranchez tous les cordons d'alimentation pour couper l'alimentation de l'appareil. Assurez-vous que ces connexions sont facilement accessibles.

## Selecting Power Supply Cords

Extreme Networks does not include power input cords in the product box.

You can purchase a power cord for your product and for your specific country from your local Extreme Networks Channel Account Manager or Sales Manager, or you can purchase a cord from your local supplier. Requirements for the power cord are listed in the Technical Specifications for your product.

To locate a Sales Manager or Partner in your region，visit www．extremenetworks．com／partners／where－ to－buy．

Note
This equipment is not intended to be directly powered by power distribution systems where phase－phase voltages exceed 240 VAC（2P＋PE），such as those used in Norway，France，and other countries．For these applications it is recommended that a transformer be used to step down the voltage to＜ 240 VAC from phase－phase，or that you make a connection to a（ $\mathrm{P}+\mathrm{N}$ $+P E)$ power distribution where voltages do not exceed 240 VAC．
All installations should confirm that the product is reliably grounded according to the country＇s local electrical codes．

## Battery Replacement and Disposal

Batteries included with Extreme products are encapsulated and must be replaced only by qualified Extreme Service personnel．

Contact your Extreme Networks Service personnel for product replacement．Do not attempt to replace the battery．If these instructions are disregarded and replacement of these batteries is attempted，the following guidelines must be followed to avoid danger of explosion：
－Replace with the same or equivalent battery type as recommended by the battery manufacturer．
－Dispose of the battery in accordance with the battery manufacturer＇s recommendation．

## Battery Warning－Taiwan

## 警告 <br> 如果更換不正確之電池型式會有爆炸的風險，請依製造商說明書處理用過之電池。

## Fiber Optic Ports and Optical Safety

The following safety warnings apply to all optical devices used in Extreme Networks equipment that are removable or directly installed in an I／O module or chassis system．

Such devices include but are not limited to gigabit interface converters (GBICs), small form factor pluggable (SFP) modules (or mini-GBICs), QSFP+ modules, XENPAK transceivers, and XFP laser optic modules.

## Warning

Laser optic modules become very hot after prolonged use. Take care when removing a laser optic module from the module or option card. If the laser optic module is too hot to touch, disengage the laser optic module and allow it to cool before removing it completely.
When working with laser optic modules, always take the precautions listed below to avoid exposure to hazardous radiation.

- Never look at the transmit LED/laser through a magnifying device while the transmit LED is powered on.
- Never look directly at a fiber port on the switch or at the ends of a fiber cable when they are powered on.
- Invisible laser radiation can occur when the connectors are open. Avoid direct eye exposure to the beam when optical connections are unplugged.
- Never alter, modify, or change an optical device in any way other than suggested in this document.


## GBIC, SFP (Mini-GBIC), QSFP+, XENPAK, and XFP Regulatory Compliance

Extreme Networks pluggable optical modules and direct-attach cables meet the following regulatory requirements:

- Class 1 or Class 1M Laser Product
- EN60825-1:2007 2nd Ed. or later, European standard
- FCC 21 CFR Chapter 1, Subchapter J in accordance with FDA \& CDRH requirements
- Application of CE Mark in accordance with 2004/108/EEC EMC Directive and the 2006/95/EC Low Voltage Directives
- UL and/or CSA registered component for North America
- 47 CFR Part 15, Class A when installed into Extreme products


## Sicherheitshinweise

## Warning



Lesen Sie die folgenden Sicherheitshinweise aufmerksam durch, ehe Sie Extreme NetworksProdukte installieren. Eine Missachtung dieser Sicherheitshinweise kann zu Verletzungen oder zu einer Beschädigung des/r Geräte/s führen.

[^6]
## Überlegungen vor der Installation

Berücksichtigen Sie vor der Installation der Geräte folgende Punkte.

- Wählen Sie für Geräte, die in einer typischen Telekommunikationsumgebung mit kontrollierten Umweltbedingungen eingesetzt werden, einen Ort mit folgenden Merkmalen:
- Temperatur und Feuchtigkeit werden kontrolliert, und die maximale Raumtemperatur liegt nicht über $40^{\circ} \mathrm{C}$.
- Sauber und frei von in der Luft enthaltenen Stoffen, die Elektrizität übertragen können.
- Gut belüftet und fern von Wärmequellen inklusive direkter Sonneneinstrahlung.
- Fern von Quellen für Erschütterungen oder mechanische Einwirkungen.
- Getrennt von starken elektromagnetischen Feldern, die von elektrischen Geräten erzeugt werden.
- Bei Geräten, die nicht für eine Installation in Umgebungen mit kontrollieren Umweltbedingungen vorgesehen sind, wie z. B. Gehäuse im Freien, beachten Sie bitte das Produktdatenblatt oder Anhang B dieser Anleitung mit den Spezifikationen für Umgebungsbedingungen, Temperatur und Feuchtigkeit.
- Lassen Sie auf allen Seiten mindestens 3 Zoll Platz, um eine ausreichende Luftzirkulation zu gewährleisten. Die Lüftungsschlitze an der Vorder- oder Rückseite und an den Seiten dürfen nicht blockiert werden. Stellen Sie das System nicht in der Nähe von Wärmequellen auf.
- Versichern Sie sich, dass Ihre Geräte in einem Bereich aufgestellt werden, der für den Stromverbrauch und die damit verbundene Wärmestrahlung der Komponenten geeignet ist.
- Versichern Sie sich, dass Ihre Netzteile den Gleichstrom- bzw. Wechselstrombedarf aller Netzwerkgeräte decken können.
- Racks für Extreme Networks-Geräte müssen fest am Boden verankert werden. Bei nicht vorschriftsmäßiger Fixierung des Racks besteht die Gefahr, dass das Rack bei Wartungsarbeiten umkippt.
- Voraussetzung für den Betrieb des Systems ist die vollständige Anbringung aller Module, Blenden, Frontabdeckungen und rückseitigen Abdeckungen. Blenden und Abdeckplatten erfüllen folgende Funktionen:
- Schutz vor gefährlich hohen Spannungen und Strömen im Inneren des Gerätes
- Eindämmung von elektromagnetischen Interferenzen (EMI), die andere Geräte stören könnten
- Vorgabe der Luftströmungsrichtung durch das Gerät
- Bei der Entsorgung des Gerätes sind alle nationalen Gesetze und Vorschriften zu beachten.


## Allgemeine Sicherheitshinweise

Befolgen Sie die Richtlinien:

- Heben Sie keine Gegenstände, die zu schwer für Sie sind.
- Bei der Installation von Geräten in einem Rack platzieren Sie die schwereren Geräte in der unteren Hälfte, damit das Rack nicht kopflastig wird.
- Verwenden Sie nur Werkzeuge und Geräte, die sich in einem einwandfreien Zustand befinden. Werkzeuge, die sichtbar beschädigt sind, dürfen nicht benutzt werden.
- Achten Sie bei der Verlegung von Kabeln darauf, mögliche Beschädigungen der Kabel zu vermeiden und Risiken, z. B. Stolpergefahren, auszuschalten.
- Stellen Sie keinen Bildschirm oder anderen Gegenstände auf die Geräte. Die Chassisabdeckung ist keine Abstellfläche.
- Zum Schutz vor Selbstentzündung verwenden Sie nur Datenübertragungskabel der Größe 26 AWG oder größer. Verwenden Sie nur Kupferleiter.
- Arbeiten Sie während eines Gewitters nicht an dem System und stecken Sie keine Kabel an oder ab.
- Das Gerät muss geerdet werden. Der Schutzleiter darf nicht manipuliert oder umgangen werden und das Gerät darf auf keinen Fall ohne einen entsprechend installierten Schutzleiter betrieben werden.


## Sicherheit bei Wartungsarbeiten

Befolgen Sie bei allen Wartungsarbeiten an Extreme Networks-Geräten folgende Empfehlungen:

- Verwenden Sie nur zugelassene Zubehörteile oder Komponenten, die für den Einsatz mit diesem System genehmigt sind. Eine Missachtung dieser Hinweise kann zu einer Beschädigung des/r Geräte/s führen und die einschlägigen Sicherheits- und EMV-Vorschriften verletzen.
- Das System enthält keinerlei Teile, die vom Benutzer zu warten sind. Versuchen Sie nicht, Chassis, Netzteil, Modul oder andere Komponenten eigenmächtig zu reparieren. Senden Sie im Falle einer Störung das defekte Teil zur Reparatur oder zum Austausch an Extreme Networks ein, sofern ein Extreme Networks-Vertreter nicht etwas anderes angibt.
- Um das System spannungslos zu machen, müssen Sie alle Netzkabel aus den Netzsteckdosen ziehen. Das Netzkabel ist der "Trennschalter" für die Netzspannungsquelle.
- Trennen Sie vor allen Arbeiten in der unmittelbaren Nähe von Netzteilen alle Netzkabel von der Spannungsquelle, sofern die produktspezifische Wartungsanleitung nicht etwas anderes angibt.
- Legen Sie für alle Arbeiten an optischen Geräten, Netzteilen oder sonstigen modularen Zubehörteilen ein geerdetes Massearmband an, um das Risiko einer Beschädigung des Gerätes durch elektrostatische Aufladung zu reduzieren. Schließen Sie das eine Ende des Armbands an einem geeigneten Erdungspunkt am Rack oder an einer ESD-Buchse am Chassis (sofern vorhanden) an. Lassen Sie das geerdete Massearmband am Rack oder am Chassis angeschlossen, damit Sie es jederzeit parat haben, wenn Sie mit Komponenten umgehen, die empfindlich gegenüber elektrostatischer Aufladung sind.
- Die Kabel sind spannungsfrei zu installieren. Verwenden Sie Kabelbinder oder sonstige Zugentlastungsvorrichtungen.


## Kabelverlegung für LAN-Systeme

Extreme Networks-Geräte erfüllen die Anforderungen für Geräte für LAN-Systeme. LAN-Systeme sind für gebäudeinterne Installationen konzipiert, das heißt, die Kabel zwischen den einzelnen Einheiten müssen im gleichen Gebäude verlaufen, in dem auch die Geräte untergebracht. Hiervon ausgenommen sind nur die unten aufgeführten Bedingungen.

Laut dem US-amerikanischen National Electrical Code (NEC) darf diese Ausrüstung zwischen Gebäuden verbunden werden, sofern eine der folgenden Bedingungen erfüllt ist:

- Die Länge der zwischen Gebäuden verlegten Kabel beträgt höchsten 140 Fuß.
- Die Kabel sind zwischen den Gebäuden direkt erdverlegt.
- Die Kabel zwischen den Gebäuden sind in einem unterirdischen Kanal verlegt, wobei ein durchgehender metallischer Kabelschirm oder eine durchgehende Metallleitung, die das Kabel umschließt, an den Erdungselektrodensystemen der einzelnen Gebäude angeschlossen ist.


## Caution



Eine Missachtung dieser Bedingungen für die Kabelverlegung kann Nutzer der Gefahr eines elektrischen Stromschlages aussetzen und das Gerät so beschädigen, dass es nicht mehr einwandfrei arbeitet.

## Warning

Die Ethernet-Anschlüsse des Gerätes und der zugehörigen Baugruppen sind nur für gebäudeinterne (innerhalb ein und desselben Gebäudes) Verbindungen oder für Anschlüsse an nicht exponierte Verdrahtungen oder Verkabelungen geeignet (siehe die oben aufgeführten Bedingungen). Die Ethernet-Anschlüsse des Gerätes und der zugehörigen Baugruppen dürfen nicht mit Metallkontakt an Schnittstellen angeschlossen werden, die mit einer externen Anlage (Outside Plant, OSP) oder deren Verdrahtung verbunden sind. Ethernet-Schnittstellen sind nur für eine Verwendung als gebäudeinterne Schnittstellen konzipiert (sog. Ports vom Typ 2 oder Typ 4 gemäß GR-1089-CORE, Ausgabe 6) und müssen durch Isolierung von exponierter OSP-Verdrahtung getrennt werden. Primäre Protektoren sind kein ausreichender Schutz für den Anschluss dieser Schnittstellen über einen Metallkontakt mit OSP-Verdrahtung.
Diese Warnung gilt nicht für Ports vom Typ T1/E1, weil diese Ports über eine integrierte Isolierung und einen Schutz vor Spannungsspitzen verfügen, der den Anschluss an OSPVerdrahtung gestattet.

## Installation der Netzteile und Netzanschluss

Die Leistungsdaten und die Anforderung der einzelnen Netzteile an den Leistungseingang entnehmen Sie bitte Anhang B dieser Anleitung oder dem Datenblatt für die Netzversorgung unter www.extremenetworks.com.

Warning
Die in diesem Abschnitt aufgeführten Anforderungen müssen bei der Installation von Extreme Networks-Netzteilen und beim Netzanschluss unbedingt erfüllt werden.

Bei Installation eines Netzteils:

- Schieben Sie das Netzteil nicht mit Gewalt in den Einschub.
- Versuchen Sie nicht, das Gehäuse des Netzteils zu öffnen; das Netzteil enthält keinerlei Teile, die vom Nutzer zu warten sind. Senden Sie im Falle einer Störung das defekte Netzteil zur Reparatur oder zum Austausch an Extreme Networks ein.
- Fassen Sie nicht mit der Hand in einen offenen Netzteileinschub, wenn das Netzteil entfernt wurde.
- Legen Sie vor allen Arbeiten an einem an Leistungskabeln angeschlossenen Gerät sämtlichen Schmuck sowie Ihre Armbanduhr ab. Im Falle eines Kurzschlusses (Kontakt mit Leistung und Erde) erwärmen sich Metallgegenstände, was zu ernsthaften Verbrennungen führen oder den Metallgegenstand mit den Anschlüssen verschweißen kann.
- Legen Sie vor allen Arbeiten an einem an Leistungskabeln angeschlossenen Gerät sämtlichen Schmuck sowie Ihre Armbanduhr ab. Metallgegenstände erwärmen sich, wenn sie an Leistung und
an Erde angeschlossen werden, was zu ernsthaften Verbrennungen führen oder den Metallgegenstand mit den Anschlüssen verschweißen kann.
- Wenn das Netz bei angeschlossener Netzversorgung angeschlossen oder getrennt wird, kann ein elektrischer Lichtbogen entstehen. Dies kann bei Installationen in Gefahrenbereichen zu einer Explosion führen. Achten Sie unbedingt darauf, dass das Gerät nicht mit der Netzversorgung verbunden ist.
- Achten Sie bei der Installation oder beim Austausch von Geräten darauf, dass Sie zuerst den Erdungsanschluss herstellen bzw. den Erdungsanschluss zuletzt trennen.

Bei Installation von AC-Netzteilen:

- Schließen Sie bei Switches mit einem vor Ort austauschbaren Netzteil die Spannungsversorgung nicht an einer elektrischen Spannungsquelle an, wenn das Netzteil nicht im Switch eingebaut ist; andernfalls kann gefährliche Energie freigesetzt werden und es besteht potenzielle Stromschlagund Brandgefahr.
- Stecken Sie Netzteile nur an vorschriftsmäßig geerdete Netzsteckdosen an, um die Gefahr eines elektrischen Stromschlages zu vermeiden und internationale Sicherheitsstandards zu erfüllen.
- Verwenden Sie nur Netzkabel, die in dem jeweiligen Einsatzland zugelassen sind. Versuchen Sie nicht, modifizierte AC-Netzkabel zu verwenden
- Versichern Sie sich, dass Spannung und Frequenz Ihrer Steckdose mit den elektrischen Daten Ihres Gerätes übereinstimmen. Das Gebäude und/oder die Spannungsquelle muss gegen Überlast geschützt sein.
- Verwenden Sie einen Überspannungsschutz, einen Netzfilter oder eine unterbrechungsfreie Spannungsversorgung, um das System plötzlichen Spannungsschwankungen zu schützen.
- Bei Systemen mit mehreren Netzteilen schließen Sie jedes Netzteil an einer anderen, unabhängigen Überstromschutzvorrichtung an, z. B. an einem Schütz. Bei Ausfall einer Spannungsquelle ist nur das daran angeschlossene Netzteil betroffen. Für die korrekte Auslegung des Schützes siehe das Datenblatt des Netzteils.
- AC-Netzteile von Extreme Networks haben keinen Ein-/Ausschalter. Trennen Sie alle Netzstecker von den elektrischen Steckdosen, um die Spannungsversorgung zu unterbrechen. Achten Sie auf gute Zugänglichkeit der Steckdosen.

Installation von DC-Netzteilen und Anschluss von Gleichspannung:

- Der Anschluss an die Gleichspannungsquelle Ihrer Einrichtung muss von einem qualifizierten, geprüften Elektriker vorgenommen werden.
- DC-Netzteile von Extreme Networks haben keinen Ein-/Ausschalter. Versichern Sie sich, dass der DC-Kreis spannungslos ist, ehe Sie das Gleichstromkabel an einer Gleichstromeingangsbuchse anoder abstecken.
- Schließen Sie eine Gleichstromversorgung nicht an die DC-Quelle an, wenn das Netzteil nicht im Chassis eingebaut ist; andernfalls kann gefährliche Energie freigesetzt werden und es besteht potenzielle Stromschlag- und Brandgefahr.
- Schließen Sie das System oder das Netzteil nur an eine DC-Spannungsquelle an, die die Bestimmungen für Sicherheitskleinspannung (SELV) in den IEC 60950-basierten Sicherheitsstandards erfüllt.
- DC-Geräte müssen in einem zugangsbeschränkten Bereich installiert werden, damit gewährleistet ist, dass nur geschultes und qualifiziertes Wartungspersonal Zugang zu den Geräten hat. Ein
zugangsbeschränkter Bereich kann beispielsweise nur mithilfe eines Spezialwerkzeugs, Schloss und Schlüssel oder einer anderen Sicherheitsvorrichtung geöffnet werden.


## Note

Da die Gebäudevorschriften in aller Welt unterschiedlich sind, empfiehlt Extreme Networks dringend, sich bezüglich der korrekten Erdung und Spannungsverteilung für Ihre Installation in Ihrem Land an einen Elektrofachbetrieb zu wenden.

## Auswahl der Netzkabel

Im Lieferumfang von Extreme Networks-Produkten sind keine Netzkabel enthalten.
Ein für Ihr Produkt und Land passendes Netzkabel erhalten Sie entweder von Ihrem zuständigen Extreme Networks Channel Account Manager oder Sales Manager oder im örtlichen Fachhandel. Die Anforderungen an das Netzkabel entnehmen Sie Anhang B zu dieser Anleitung.

Hier finden Sie Ihren zuständigen Sales Manager oder Fachhändler: www.extremenetworks.com/ partners/where-to-buy

## Note

Dieses Gerät ist nicht für eine direkte Versorgung von einem Spannungsverteilungssystem vorgesehen, wo die Leiter-Leiter-Spannung den Wert von 240 VAC (2 Phasen+Schutzerde),
 wie zum Beispiel in Norwegen, Frankreich und anderen Ländern. Für derartige Anwendungen wird ein Transformator empfohlen, um die Spannung auf einen Wert unter < 240 VAC (LeiterLeiter) herunterzutransformieren oder ein Anschluss an eine ( $\mathrm{P}+\mathrm{N}+$ Schutzerde) Spannungsverteilung, wo die Spannung 240 VAC nicht überschreitet.
Alle Installationen müssen eine zuverlässige Erdung gemäß den nationalen Elektrovorschriften vorsehen.

## Wechseln und Entsorgen der Batterie

Die Batterien in Extreme Produkten sind gekapselt und dürfen nur durch qualifiziertes ExtremeWartungspersonal ausgewechselt werden.

Wenden Sie sich für den Austausch eines Produktes an das Wartungspersonal von Extreme Networks. Versuchen Sie nicht, die Batterie selbst auszuwechseln. Bei einer Missachtung dieser Anweisungen und dem Versuch, die Batterien eigenmächtig zu wechseln, müssen folgende Richtlinien eingehalten werden, um eine mögliche Explosion zu vermeiden:

- Tauschen Sie die Batterie nur gegen eine Batterie des gleichen Typs (wie vom Hersteller empfohlen)aus.
- Entsorgen Sie die Batterie gemäß den Empfehlungen des Batterieherstellers.


## LWL-Ports und optische Sicherheit

Folgende Sicherheitswarnung gilt für alle optischen Geräte, die in Extreme Networks-Geräten eingesetzt werden und entweder herausnehmbar sind oder direkt in einem E/A-Modul oder im Chassissystem eingebaut sind.

Solche Geräte sind nicht nur Gigabit-Interface-Konverter (GBICs), steckbare Kleinformfaktormodule (SFP) (oder Mini-GBICs), QSFP+ Module, XENPAK Sendeempfänger und laseroptische XFP-Module.
Warning
Laseroptische Module können bei längerem Gebrauch sehr heiß werden. Seien Sie beim
Ausbau eines laseroptischen Moduls aus dem Modul oder der Optionskarte äußerst vorsichtig.
Wenn das laseroptische Modul zum Anfassen zu heiß ist, trennen Sie das laseroptische Modul
und lassen Sie es abkühlen, ehe Sie es komplett ausbauen.
Ergreifen Sie beim Arbeiten mit laseroptischen Modulen die nachfolgenden
Vorsichtsmaßnahmen, um eine Aussetzung gegenüber gefährlicher Strahlung zu vermeiden.

- Blicken Sie auf keinen Fall durch ein Vergrößerungsglas in die Sendediode/den Laser, solange die Sendediode aktiv ist.
- Blicken Sie auf keinen Fall in den LWL-Port am Switch oder auf die Stirnflächen eines aktiven LWLKabels.
- Bei offenen Anschlüssen kann unsichtbare Laserstrahlung abgegeben werden. Vermeiden Sie eine direkte Aussetzung der Augen gegenüber dem Strahl, wenn die optischen Anschlüsse offen (ohne Stecker) sind.
- Optische Geräte dürfen auf keine andere Weise als in diesem Dokument empfohlen verändert, modifiziert oder umgebaut werden.


## Konformität von GBIC, SFP (Mini-GBIC), QSFP+, XENPAK und XFP

Steckbare optische Module von Extreme Networks und direkt angeschlossene Kabel erfüllen folgende gesetzliche Vorschriften:

- Laserprodukt der Klasse 1 oder Klasse 1M
- EN60825-1:2007 2. Ausgabe oder später, Europäische Norm
- FCC 21 CFR Kapitel 1, Paragraph J in Übereinstimmung mit FDA- und CDRH-Bestimmungen
- Anwendung des CE-Zeichens gemäß der EMV-Richtlinie 2004/108/EEC und der Niederspannungsrichtlinie 2006/95/EC
- UL und/oder CSA-geprüfte Komponente für Nordamerika
- 47 CFR Teil 15, Klasse A bei Einbau in Extreme-Produkte


## Mögliche Netzanschlussgerät- und Lüftereinsatz-Konfigurationen für $X 770-32 q$

Table 125: Mögliche Netzanschlussgerät- und Lüftereinsatz-Konfigurationen für X770-32q

| Konfiguration Nr. | Anzahl d. <br> Netzanschlussgeräte | Artikelnummer d. Netzanschlussgeräts | Beschreibung d. <br> Spannungsversorgung | Anzahl d. Lüftereinsätze | Artikelnummer <br> Lüftereinsatz | Beschreibung Lüftereinsatz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 10927 z | Netzanschlussgerät Summit 550 W AC Luftstrom von hinten nach vorne (DS550HE-3) | 5 | $17112 z$ | Lüftermodul Summit X670 Luftstrom von hinten nach vorne (JDD0405612UB3A01) |
| 2 | 1 | 10925z | Netzanschlussgerät Summit 550 W AC Luftstrom von vorne nach hinten (DS550HE-3) | 5 | 17111z | Lüftermodul X670 <br> Luftstrom von vorne nach hinten (AS04012UB565300) |
| 3 | 2 | 10927 z | Netzanschlussgerät Summit 550 W AC Luftstrom von hinten nach vorne (DS550HE-3) | 5 | $17112 z$ | Lüftermodul Summit X670 Luftstrom von hinten nach vorne (JDD0405612UB3A01) |
| 4 | 2 | 10925z | Netzanschlussgerät Summit 550 W AC Luftstrom von vorne nach hinten (DS550HE-3) | 5 | 17111z | Lüftermodul X670 <br> Luftstrom von vorne nach hinten (AS04012UB565300) |
| 5 | 1 | $10928 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von hinten nach vorne (DS550DC-3-003) | 5 | $17112 z$ | Lüftermodul Summit X670 Luftstrom von hinten nach vorne (JDD0405612UB3A01) |
| 6 | 1 | $10926 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von vorne nach hinten (DS550DC-3) | 5 | $17111 z$ | Lüftermodul X670 <br> Luftstrom von vorne nach hinten (AS04012UB565300) |
| 7 | 2 | $10928 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von hinten nach vorne (DS550DC-3-003) | 5 | $17112 z$ | Lüftermodul Summit X670 Luftstrom von hinten nach vorne (JDD0405612UB3A01) |
| 8 | 2 | $10926 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von vorne nach hinten (DS550DC-3) | 5 | $17111 z$ | Lüftermodul X670 <br> Luftstrom von vorne nach hinten (AS04012UB565300) |

Table 125: Mögliche Netzanschlussgerät- und Lüftereinsatz-Konfigurationen für X770-32q (continued)

| Konfiguration Nr . | Anzahl d. <br> Netzanschlussgeräte | Artikelnummer $d$. <br> Netzanschlussgeräts | Beschreibung d. Spannungsversorgung | Anzahl d. <br> Lüftereinsätze | Artikelnummer <br> Lüftereinsatz | Beschreibung <br> Lüftereinsatz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 1 | 10927z | Netzanschlussgerät Summit 550 W AC PSU Luftstrom von hinten nach vorne (DS550HE-3) | 5 | $17112 z$ | Lüftermodul Summit X670 Luftstrom von hinten nach vorne (JDD0405612UB3A01) |
|  | 1 | $10928 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von hinten nach vorne (DS550DC-3-003) |  |  |  |
| 10 | 1 | 10925z | Netzanschlussgerät Summit 550 W AC Luftstrom von vorne nach hinten (DS550HE-3) | 5 | 171112 | Lüftermodul X670 <br> Luftstrom von vorne nach hinten (AS04012UB565300) |
|  | 1 | $10926 z$ | Netzanschlussgerät Summit 550 W DC Luftstrom von vorne nach hinten (DS550DC-3) |  |  |  |

## B Technical Specifications

```
Summit X150 Series Switches Technical Specifications
Summit X250e Series Switches Technical Specifications
Summit X350 Series Switches Technical Specifications
Summit X430 Series Switches Technical Specifications
Summit X440 Series Switches Technical Speciffications
Summit X450 Series Switches Technical Specifications
Summit X450a Series Switches Technical Specifications
Summit X450e Series Switches Technical Specifications
Summit X450-G2 Series Switches Technical Specifications
Summit X460 Series Switches Technical Specifications
Summit X460-G2 Series Switches Technical Specifications
Summit X480 Series Switches Technical Speciffcations
Summit X650 Series Switches Technical Specifications
Summit X670 Series Switches Technical Specifications
Summit X670-G2 Series Switches Technical Specifications
Summit X770 Series Switches Technical Specifications
STK-RPS-150PS and RPS Shelves Technical Specifications
Summit 300 W Power Supplies Technical Specifications
Summit 350 W Power Supplies Technical Specifications
Summit 450 W Power Supplies Technical Specifications
Summit 550 W Power Supplies Technical Specifications
Summit 550 W Power Supplies for X670-G2 Switches
Summit 715 W Power Supplies Technical Specifications
Summit 750 W Power Supplies Technical Speciffcations
Summit 850 W Power Supplies Technical Specifications
Summit 1100 W Power Supplies Technical Specifications
Summit External Power Supplies Technical Specifications
EPS-C2 Redundant Power Supply Technical Specifications
RPS-5000 Redundant Power Supply Technical Specifications
Power Cord Requirements for AC-Powered Switches and AC Power Supplies
Console Connector Pinouts
Taiwan Warnings
Japan (VCCl Class A)
```


## Korea EMC Statement

Note
In this section, all references to specific switch model numbers also apply to the equivalent TAA-compliant switch versions.

## Summit X150 Series Switches Technical Specifications

The Summit X150 series includes the following switches:

- Summit X150-24t switch
- Summit X150-24p switch
- Summit X150-48t switch

Table 126: Physical Dimensions

| Summit X150-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X150-24p switch | Width: 17.35 inches $(44.1 \mathrm{~cm})$ |
|  | Depth: 12.13 inches $(30.8 \mathrm{~cm})$ |
| Summit X150-48t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Wepth: 17.35 inches $(44.18$ inches $(38.8 \mathrm{~cm})$ |

Table 127: Weight

| Summit X150-24t switch | $12.01 \mathrm{lb}(5.46 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 150-24 \mathrm{p}$ switch | $14.9 \mathrm{lb}(6.8 \mathrm{~kg})$ |
| Summit $\times 150-48 \mathrm{t}$ switch | $15.1 \mathrm{lb}(6.9 \mathrm{~kg})$ |

Table 128: Packaged Dimensions

| Summit X150-24t switch <br> Summit $\times 150-24 \mathrm{p}$ switch | Height: 12.6 inches $(32 \mathrm{~cm})$ <br>  <br>  <br>  <br> Width: 23.6 inches $(60 \mathrm{~cm})$ <br> Depth: 18.5 inches $(47 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X150-48t switch | Height: 12.2 inches $(31 \mathrm{~cm})$ <br>  <br>  <br>  <br>  <br>  <br> Width: 22.8 inches $(58 \mathrm{~cm})$ <br> Depth: 22 inches $(56 \mathrm{~cm})$ |

Table 129: Packaged Weight

| Summit $\times 150-24 \mathrm{t}$ switch | $10.5 \mathrm{lb}(4.8 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 150-24 \mathrm{p}$ switch | $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |
| Summit $\times 150-48 \mathrm{t}$ switch | $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |

Table 130: Summit X150-24t Power

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | 0.5 A @ $115 \mathrm{~V} ~$ (low-line) <br> 0.25 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | $83 \%$ with $60 \%$ to $100 \%$ load |
| Heat dissipation (Watts, BTU) | 36 W (122.8 BTU/hr) |
| Power consumption (Watts, BTU) | 36 W (122.8 BTU/hr) |

Table 131: Summit X150-24p Power

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.5 \mathrm{~A}$ |
| Input current (without PoE | 0.75 A @ $115 \mathrm{~V} \sim$ (low-line) <br> 0.5 A @ 230 V~ (high-line) |
| Input current (with PoE full load) | 4.4 A @ $115 \mathrm{~V} \sim$ (low-line) <br> 2.2 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A@115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 Cl 4 |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | $81 \%$ with $60 \%$ to $100 \%$ load |
| Heat dissipation (Watts, BTU) | 60 W (204.7 BTU/hr |
| Power consumption (Watts, BTU) | 500 W (1706 BTU/hr) |

Table 132: Summit X150-48t Power

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | 0.5 A @ 115 V~ (low-line) <br> 0.25 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 83\% with 60\% to 100\% load |
| Heat dissipation (Watts, BTU) | 36 W (123 BTU/hr) |
| Power consumption (Watts, BTU) | 36 W (123 BTU/hr) |

Table 133: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 73/23/EEC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 134: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) <br>  <br> ICES-003 Class A (Canada) |
| :--- | :--- |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | $89 / 336 /$ EEC EMC Directive |

Table 134: EMI/EMC Standards (continued)

| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
| :--- | :--- |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, |
|  | Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (Korea) |

Table 135: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)

Table 136: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 137: Environmental Data

| Environmental Standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity: $95 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ (3 G), $11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to $500 \mathrm{MHz} @ 1.5 \mathrm{Grms}$ |
| Storage \& transportation conditions (packaged) | Temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ <br> Humidity: 10\% to 95\% relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ (18 G), $6 \mathrm{~ms}, 600$ shocks <br> Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, <br> 62 to 500 Hz @ 0.2 G <br> Packaged random vibration: 5 to 20 Hz @ 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches (<15 kg box) |
| Acoustic noise (in dBA per ISO 7779) | Summit X150-24t: 45 (high fan speed) <br> 37 (low fan speed) <br> Summit X150-24p: 44 (high fan speed) <br> 39 (low fan speed) <br> Summit X150-48t: 45 (high fan speed) <br> 37 (low fan speed) |

## Summit X250e Series Switches Technical Specifications

The Summit $\times 250$ e series includes the following switches:

- Summit X250e-24t switch
- Summit X250e-24tDC switch
- Summit X250e-24p switch
- Summit X250e-24x switch
- Summit X250e-24xDC switch
- Summit X250e-48t switch
- Summit X250e-48tDC switch
- Summit X250e-48p switch

Table 138: Physical Dimensions

| Summit X250e-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X250e-24tDC switch | Width: 17.35 inches $(44.1 \mathrm{~cm})$ |
| Summit X250e-24p switch | Depth: 12.13 inches $(30.8 \mathrm{~cm})$ |
| Summit X250e-24× switch |  |
| Summit X250e-24×DC switch |  |
| Summit $\times 250 \mathrm{e}-48 \mathrm{t}$ switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{tDC}$ | Width: 17.35 inches $(44.1 \mathrm{~cm})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{p}$ switch | Depth: 15.28 inches $(38.8 \mathrm{~cm})$ |

Table 139: Weight

| Summit $\times 250 \mathrm{e}-24 \mathrm{t} \mathrm{switch}$ | $10.5 \mathrm{lb}(4.8 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 250 \mathrm{e}-24 \mathrm{tDC}$ switch | $9.9 \mathrm{lb}(4.5 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-24 \mathrm{p}$ switch | $121.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-24 \times$ switch | $10.2 \mathrm{lb}(4.6 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-24 \times \mathrm{DC}$ switch | $10 \mathrm{lb}(4.6 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{t}$ switch | $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{tDC}$ switch | $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{p}$ switch | $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$ |

Table 140: Packaged Dimensions

| Summit X250e-24t switch | Height: 12.6 inches $(32 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X250e-24tDC switch | Width: 23.6 inches $(60 \mathrm{~cm})$ |
| Summit X250e-24p switch | Depth: 18.5 inches $(47 \mathrm{~cm})$ |
| Summit X250e-24× switch |  |
| Summit X250e-24xDC switch | Height: 12.2 inches $(31 \mathrm{~cm})$ |
| Summit X250e-48t switch | Width: 22.8 inches $(58 \mathrm{~cm})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{tDC}$ switch <br> Summit $\times 250 \mathrm{e}-48 \mathrm{p}$ switch | Depth: 22 inches $(56 \mathrm{~cm})$ |

Table 141: Packaged Weight

| Summit <br> Summit $\times 250 \mathrm{e}-24 \mathrm{t}$ switch $-24 \times$ switch | $13.2 \mathrm{lb}(6.0 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 250 \mathrm{e}-24 \mathrm{tDC}$ switch | $13.1 \mathrm{lb}(6.0 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-24 \times \mathrm{DC}$ switch | $13.2 \mathrm{lb}(6.0 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-24 \mathrm{p}$ switch | $14.9 \mathrm{lb}(6.8 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{t}$ switch | $15.1 \mathrm{lb}(6.9 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{tDC}$ switch | $15.5 \mathrm{lb}(7.0 \mathrm{~kg})$ |
| Summit $\times 250 \mathrm{e}-48 \mathrm{p}$ switch | $17.0 \mathrm{lb}(7.7 \mathrm{~kg})$ |

Table 142: Summit X250e-24t Power

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | 0.5 A @ $115 \mathrm{~V} \sim$ (low-line) <br> 0.25 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 83\% at 60\% to 100\% load |
| Heat dissipation (Watts, BTU) | 36 W (122.8 BTU/hr) |
| Power consumption (Watts, BTU) | 36 W (122.8 BTU/hr) |

Table 143: Summit X250e-24p Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.25 \mathrm{~A}$ |
| Input current (without PoE $\backslash$ ) | $0.75 \mathrm{~A} @ 115 \mathrm{~V} \sim$ (low-line) |
|  | $0.5 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) |
| Input current (with PoE full load) | $4.4 \mathrm{~A} @ 115 \mathrm{~V} \sim$ (low-line) |
|  | $2.2 \mathrm{~A} \mathrm{@} 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |

Table 143: Summit X250e-24p Power (continued)

| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |
| :--- | :--- |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{C14}$ |
| Power cord input plug | IEC $320 \mathrm{C13}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG (0.75 mm²) up to 6 feet or 2 meters <br> or <br> $16 ~ A W G ~(1.0 ~ m m ²) ~ o v e r ~ 6 ~ f e e t ~$ |
| Efficiency | $81 \%$ with 60\% to 100\% load |
| Heat dissipation (without PoE) | $75 \mathrm{~W}(256 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption (without PoE) | $75 \mathrm{~W}(256 \mathrm{BTU} / \mathrm{hr})$ |
| Heat dissipation (with PoE full load) | $130 \mathrm{~W}(444 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption (with PoE full load) | $525 \mathrm{~W}(1,791 \mathrm{BTU} / \mathrm{hr})$ |

Table 144: Summit X250e-24x Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | $\begin{aligned} & 1.0 \mathrm{~A} @ 115 \mathrm{~V} \sim \text { (low-line) } \\ & 0.5 \mathrm{~A} @ 230 \mathrm{~V} \sim \text { (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | $80 \%$ with $60 \%$ to $100 \%$ load |
| Heat dissipation | 49 W (167.2 BTU/hr) |
| Power consumption | 49 W (167.2 BTU/hr) |

Table 145: Summit X250e-24xDC Power

| Operational voltage range | -40 to $-72 \mathrm{~V}=-=$ |
| :--- | :--- |
| Nominal input ratings | $-48 \mathrm{~V}=-=2.0 \mathrm{~A}$ |

Table 145: Summit X250e-24xDC Power (continued)

| Input current | $\begin{aligned} & \text { 1.25 A at }-40 \mathrm{~V}==\text { (low-line) } \\ & 0.75 \mathrm{~A} \text { at }-72 \mathrm{~V}==\text { (high-line) } \end{aligned}$ |
| :---: | :---: |
| Inrush current | $\begin{aligned} & 20 \mathrm{~A} \text { at }-48 \mathrm{~V}=- \\ & 30 \mathrm{~A} \text { at }-72 \mathrm{~V}=- \end{aligned}$ |
| Power supply cord type | DC |
| Power supply input socket | TYCO 206061-1 |
| Power cord input plug | TYCO 206060-1 |
| Power cord wall plug | None provided |
| Power supply cord gauge | 14 AWG (2.0 mm²) |
| Efficiency | 83\% |
| Heat dissipation | 42 W (143.3 BTU/hr) |
| Power consumption (Watts) | 47 W (160.4 BTU/hr) |

Table 146: Summit X250e-24tDC Power

| Operational voltage range | -40 to $-72 \mathrm{~V}=-=$ |
| :--- | :--- |
| Nominal input ratings | $-48 \mathrm{~V}=-=, 2.0 \mathrm{~A}$ |
| Input current | 0.8 A at $-40 \mathrm{~V}=-=$ (low-line) |
|  | 0.5 A at $-72 \mathrm{~V}==$ (high-line) |
| Inrush current | 20 A at $48 \mathrm{~V}==-, 30 \mathrm{~A}$ at $\mathrm{V}==-$ |
| Power supply cord type | DC |
| Power supply input socket | TYCO 206061-1 |
| Power cord input plug | TYCO 206060-1 |
| Power cord wall plug | None provided |
| Power supply cord gauge | $14 \mathrm{AWG}\left(2.0 \mathrm{~mm}{ }^{2}\right)$ |
| Efficiency | $78 \%$ |
| Heat dissipation | $31 \mathrm{~W}(105.8 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption (Watts) | $31 \mathrm{~W}(105.8 \mathrm{BTU} / \mathrm{hr})$ |

Table 147: Summit X250e-48t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | $0.6 \mathrm{~A} @ 115 \mathrm{~V} \sim$ (low-line) |
|  | $0.3 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |

Table 147: Summit X250e-48t Power (continued)

| Power supply cord type | AC |
| :---: | :---: |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 83\% with $60 \%$ to $100 \%$ load |
| Heat dissipation (Watts) | 51 W (174 BTU/hr) |
| Power consumption (Watts) | 51 W (174 BTU/hr) |

Table 148: Summit X250e-48p Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.5 \mathrm{~A}$ |
| Input current with PoE full load | $\begin{aligned} & \text { 4.5 A @ } 115 \text { V~ (low-line) } \\ & 2.25 \text { A @ } 230 \text { V (high-line) } \end{aligned}$ |
| Input current without PoE | 0.75 A @ 115 V~ (low-line) 0.5 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG (1.0 mm²) over 6 feet |
| Efficiency | 78\% with 60\% to 100\% load |
| Heat dissipation with PoE full load | 130 W (444 BTU/hr) |
| Heat dissipation without PoE | 75 W (256 BTU/hr) |
| Power consumption with PoE full load | 525 W (1791.4 BTU/hr) |
| Power consumption without PoE | $75 \mathrm{~W}(256 \mathrm{BTU} / \mathrm{hr})$ |

Table 149: Summit X250e-48tDC Power

| Operational voltage range | -40 to $-72 \mathrm{~V}=-$ |
| :--- | :--- |
| Nominal input ratings | $-48 \mathrm{~V}=-=, 2.0 \mathrm{~A}$ |
| Input current | 1.25 A at $-40 \mathrm{~V}=-=$ (low-line) <br> 0.75 A at $-57.6 \mathrm{~V}=-=$ (high-line) |
| Inrush current | $20 \mathrm{~A} @ 48 \mathrm{~V}=-=, 30 \mathrm{~A} @ 72 \mathrm{~V}=-=$ |
| Power supply cord type | DC |
| Power supply input socket | TYCO 206061-1 |
| Power cord input plug | TYCO 206060-1 |
| Power cord wall plug | None provided |
| Power supply cord gauge | $14 \mathrm{AWG}\left(2.0 \mathrm{~mm}{ }^{2}\right)$ |
| Efficiency | $78 \%$ |
| Heat dissipation | $47 \mathrm{~W}(160.4 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption | $47 \mathrm{~W}(160.4 \mathrm{BTU} / \mathrm{hr})$ |

Table 150: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | $73 / 23 / E E C$ Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 151: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) <br>  <br> ICES-003 Class A (Canada) |
| :--- | :--- |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | 89/336/EEC EMC Directive |

Table 151: EMI/EMC Standards (continued)

| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
| :--- | :--- |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, |
|  | Criteria C |
| Country-specific | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (South Korea) |
|  |  |

Table 152: Telecom Standards

> ETSI EN 300 386:2001 (EMC Telecommunications)
> ETSI EN 300019 (Environmental for Telecommunications)

Table 153: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 154: Environmental Data

| Environmental Standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage |
| :--- | :--- |
|  | EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation |
|  | EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational |
|  | EN/ETSI 300753 (1997-10) - Acoustic Noise |
|  | ASTM D3580 Random Vibration Unpackaged 1.5 G |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ |
|  | Humidity: $95 \%$ relative humidity, non-condensing |
|  | Altitude: 0 to 3,000 meters (9,850 feet) |
|  | Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks |
|  | Random vibration: 3 to 500 Hz @ 1.5 G rms |
|  |  |

Table 154: Environmental Data (continued)

| Storage \& transportation conditions (packaged) | Storage temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ <br> Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ (18 G), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, <br> 62 to $500 \mathrm{~Hz} @ 0.2$ G <br> Packaged random vibration: 5 to $20 \mathrm{~Hz} @ 1.0$ ASD w/-3 dB/oct. <br> from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches (< 15 kg box) |
| :---: | :---: |
| Acoustic noise (in dBA per ISO 7779) | Summit X250e-24t: 45 (high fan speed) <br> 37 (low fan speed) <br> Summit X250e-24p: 44 (high fan speed) <br> 39 (low fan speed) <br> Summit X250e-24x: 45 (high fan speed) <br> 37 (low fan speed) <br> Summit X250e-24xDC: 47 (high fan speed) <br> 37 (low fan speed) <br> Summit X250e-24tDC: 45 (high fan speed) <br> 37 (low fan speed) <br> Summit X250e-48t: 47 (high fan speed) <br> 37 (low fan speed) <br> Summit X250e-48p: 46 (high fan speed) <br> 39 (low fan speed) <br> Summit X250e-48tDC: 47 (high fan speed) <br> 37 (low fan speed) |

## Summit X350 Series Switches Technical Specifications

The Summit X350 series includes the following switches:

- Summit X350-24t
- Summit X350-48t

Table 155: Physical Dimensions

| Summit X350-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br>  <br>  <br> Width: 17.35 inches $(44.1 \mathrm{~cm})$ <br> Depth: 15.3 inches $(38.7 \mathrm{~cm})$ <br> Summit X350-48t switch <br>  <br> Weight: 1.73 inches $(4.4 \mathrm{~cm})$ <br> Depth: 17.35 inches $(44.1 \mathrm{~cm})$ |
| :--- | :--- |

Table 156: Weight

| Summit $\times 350-24 \mathrm{t}$ switch | $13.75 \mathrm{lb}(6.24 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 350-48 \mathrm{t}$ switch | $15.75 \mathrm{lb}(7.14 \mathrm{~kg})$ |

Table 157: Packaged Dimensions

| Summit X350-24t switch | Height: 5.9 inches $(15 \mathrm{~cm})$ |
| :--- | :--- |
| Summit $\times 350-48$ t switch | Width: 22.4 inches $(57 \mathrm{~cm})$ |
|  | Depth: 21.7 inches $(55 \mathrm{~cm})$ |

Table 158: Packaged Weight

| Summit X350-24t switch | $18.7 \mathrm{lb}(8.5 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X350-48t switch | $20.4 \mathrm{lb}(9.3 \mathrm{~kg})$ |

Table 159: Summit X350-24t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | 0.75 A @ $115 \mathrm{~V} \sim$ (low-line) <br> 0.4A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) (up to 6 feet or 2 meters) or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 80\% with $60 \%$ to $100 \%$ load |
| Heat dissipation | 75 W (256 BTU/hr) |
| Power consumption | 75 W (256 BTU/hr) |

Table 160: Summit X350-48t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | $1.45 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.65 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |

Table 160: Summit X350-48t Power (continued)

| Power cord input plug | IEC $320 \mathrm{C13}$ |
| :--- | :--- |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| Power supply cord gauge | $18 \mathrm{AWG}\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br> or <br> $16 \mathrm{AWG}\left(1.0 ~ \mathrm{~mm}^{2}\right)$ over 6 feet |
| Efficiency | $80 \%$ with $60 \%$ to 100\% load |
| Heat dissipation | $115 \mathrm{~W}(393 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption | $115 \mathrm{~W}(393 \mathrm{BTU} / \mathrm{hr})$ |

Table 161: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 73/23/EEC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 162: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | 89/336/EEC EMC Directive |
| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, |
|  | Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (Korea) |

Table 163: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)

Table 164: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 165: Environmental Data

| Environmental Standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity: $95 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), $11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to $500 \mathrm{MHz} @ 1.5 \mathrm{G}$ rms |
| Storage \& transportation conditions (packaged) | Storage temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ <br> Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ (18 G), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz @ 0.2 G <br> Packaged random vibration: 5 to $20 \mathrm{~Hz} @ 1.0$ ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches ( $<15 \mathrm{~kg}$ box) |
| Acoustic noise | Sound power in accordance with EN 300753 (10-1997): <br> Summit X350-24t: 48.7 dBA <br> Summit X350-48t: 49.9 dBA <br> Declared sound power: 6.4 belsA per ISO 7779 \& ISO 9296 <br> Bystander sound pressure in accordance with NEBS GR-63 Issue 2: <br> Summit X350-24t: 38.9 dBA <br> Summit X350-48t: 39.7 dBA |

## Summit X430 Series Switches Technical Specifications

The Summit $\times 430$ series includes the following switches:

- Summit X430-8p
- Summit X430-24t
- Summit X430-24p
- Summit X430-48t

Table 166: Physical Dimensions

| Summit X430-8p switch | Height: 1.75 inches ( 4.4 cm ) <br> Width: 8.25 inches ( 21.0 cm ) <br> Depth: 10.31 inches ( 26.2 cm ) |
| :---: | :---: |
| Summit $\times 430-24$ t switch | Height: 1.73 inches ( 4.4 cm ) Width: 17.4 inches ( 44.1 cm ) Depth: 8.2 inches ( 20.8 cm ) |
| Summit $\times 430-24 p$ switch | Height: 1.75 inches ( 4.4 cm ) <br> Width: 17.31 inches ( 44.0 cm ) <br> Depth: 10.25 inches ( 26.0 cm ) |
| Summit $\times 430-48$ t switch | Height: 1.73 inches ( 4.4 cm ) Width: 17.4 inches ( 44.1 cm ) Depth: 10.0 inches ( 25.4 cm ) |

Table 167: Weight

| Summit X430-8p switch | $3.1 \mathrm{lbs}(1.4 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 430-24 \mathrm{t}$ switch | $6.0 \mathrm{lbs}(2.72 \mathrm{~kg})$ |
| Summit $\times 430-24 \mathrm{p}$ switch | $9.9 \mathrm{lbs}(4.5 \mathrm{~kg})$ |
| Summit $\times 430-48 \mathrm{t}$ switch | $9.1 \mathrm{lb}(4.13 \mathrm{~kg})$ |

Table 168: Packaged Dimensions

| Summit X430-8p switch | Height: 5.9 inches ( 15.2 cm ) <br> Width 13.79 inches ( 35.0 cm ) <br> Depth: 13.32 inches ( 33.8 cm ) |
| :---: | :---: |
| Summit X430-24t switch | Height: 3.7 inches ( 9.4 cm ) Width 22.0 inches ( 55.9 cm ) Depth: 12.1 inches ( 30.7 cm ) |
| Summit X430-24tp switch | Height: 6.0 inches ( 15.3 cm ) Width 22.26 inches ( 56.5 cm ) Depth: 13.79 inches ( 35.0 cm ) |
| Summit X430-48t switch | Height: 5.1 inches $(13.0 \mathrm{~cm})$ Width 22.3 inches ( 56.6 cm ) Depth: 14.0 inches ( 35.6 cm ) |

Table 169: Packaged Weight

| Summit $\times 430-8 \mathrm{p}$ switch | $6.0 \mathrm{lb}(2.7 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 430-24 \mathrm{t}$ switch | $11.1 \mathrm{lb}(5.05 \mathrm{~kg})$ |
| Summit $\times 430-24 \mathrm{p}$ switch | $13.2 \mathrm{lb}(6.0 \mathrm{~kg})$ |
| Summit $\times 430-48 \mathrm{t}$ switch | $11.7 \mathrm{lb}(5.31 \mathrm{~kg})$ |

Table 170: Sound Pressure (LpA)

| Summit X430-8p switch | $0 \mathrm{~dB}(\mathrm{~A})$ (No fan) |
| :--- | :--- |
| Summit X430-24t switch | Fans low speed: $41 \mathrm{~dB}(\mathrm{~A})$ |
|  | Fans high speed $49 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X430-24p switch | Fans low speed: $41 \mathrm{~dB}(\mathrm{~A})$ <br>  <br> Sans high speed $53 \mathrm{~dB}(\mathrm{~A})$ <br> Summit X430-48t switch <br>  <br> Fans low speed: $38 \mathrm{~dB}(\mathrm{~A})$ <br> Fans High speed $50 \mathrm{~dB}(\mathrm{~A})$ |

Table 171: Declared Sound Power (Lwad)

| Summit X430-8p switch | O bels (No Fan) |
| :--- | :--- |
| Summit X430-24t switch | Fans low speed: 5.7 bels |
|  | Fans high speed: 6.6 bels |
| Summit X430-24p switch | Fans low speed: 5.6 bels <br>  <br>  <br> Fans high speed: 6.8 bels |
| Summit X430-48t switch | Fans low speed: 5.3 bels <br>  <br>  <br> Fans High speed: 6.5 bels <br> $753: 2012-01$. |

Table 172: Power: Summit X430-8p

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.75 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $24.2 \mathrm{~W}, 82.6 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $24.2 \mathrm{~W}, 82.6 \mathrm{BTU} / \mathrm{hr}$ |

Table 173: Power: Summit X430-24t

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.75 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $28.7 \mathrm{~W}, 97.9 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $28.7 \mathrm{~W}, 97.9 \mathrm{BTU} / \mathrm{hr}$ |

Table 174: Power: Summit X430-24p

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.75 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $55 \mathrm{~W}, 188 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $55 \mathrm{~W}, 188 \mathrm{BTU} / \mathrm{hr}$ |

Table 175: Power: Summit X430-48t

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.25 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $55.9 \mathrm{~W}, 191 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $55.9 \mathrm{~W}, 191 \mathrm{BTU} / \mathrm{hr}$ |

## Table 176: Power Cords

Extreme Networks equipment does not ship with power cords. Click the following link for locating the correct power cord for purchase and use on specific Extreme Networks equipment. Specifications for power cords in each country are also provided within this link allowing end user to purchase cords locally. www.extremenetworks.com/ product/powercords/

Table 177: CPU, Memory

| CPU/Memory |
| :--- |
| 400 MHz CPU |
| 256 MB Memory |
| 1.5 MB packet buffer per chip |

Table 178: Safety Standards

| North American Safety of ITE | UL 60950-1 2nd Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-03 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
| European Safety of ITE | EN 60950-1:2007 2nd Ed. |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 2006/95/EC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1 2nd Ed. + National Differences |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 179: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) ICES-003 Class A (Canada) |
| :---: | :---: |
| European EMC standards | FCC CFR 47 part 15 Class A (USA) <br> ICES-003 Class A (Canada) <br> 2004/108/EC EMC Directive <br> EN 55022:2010 Class A (Emissions for ITE Equipment) <br> EN 55024:2010 Class A includes EN 61000-4-2, 3, 4, 5, 6, 11 <br> EN 55011 :2009+A1:2010 (Emissions for Industrial, Scientific \& Medical <br> Radio Frequency Equipment) <br> EN 61000-3-2: 2006+A2 2009 (Harmonics) <br> EN 61000-3-3:2008 (Flicker) <br> EN 61000-6-4: 2007+A1: 2011 (General Emissions for Industrial, Scientific <br> \& Medical) <br>  <br> Medical) <br> EN 50121-4:2006 (Emission and immunity of the signaling and telecommunications apparatus) |
| International EMC certifications | CISPR 22:2008 Class A (International Emissions for ITE Equipment) <br> CISPR 24:2010 Class A (International Immunity for ITE Equipment) <br> IEC 61000-4-2:2008/EN 61000-4-2:2009 (Electrostatic Discharge, 8kV <br> Contact, 15kV Air, Criteria A) <br> IEC 61000-4-3:2010/EN 61000-4-3:2006+A12008 +A2:2010 <br> Radiated Immunity 20V/m, 80-960MHz, Criteria A <br> Radiated Immunity 10V/m, 960-2100MHz, Criteria A <br> Radiated Immunity 5V/m, 2100-2700MHz, Criteria A <br> IEC 61000-4-4:2011/EN 61000-4-4: 2004+A1: 2010 Transient Burst, <br> Power AC, $\pm 2.0 \mathrm{kV}$, Criteria A <br> Power DC, $\pm 2.0 \mathrm{kV}$ CM, 1 kV DM, Criteria A <br> I/O Cables, $\pm 2.0 \mathrm{kV}$ for all I/O longer than 3 m <br> IEC 61000-4-5:2005/EN 61000-4-5:2006 Surge, Test to 2/4kV, Level 3 <br> AC Power, 1kV DM, 2kV CM, Criteria A <br> DC Power 1kV DM, 2kV CM, Criteria A <br> I/O 1kV L-G, Criteria A <br> IEC 61000-4-6:2008/EN 61000-4-6:2009 Conducted Immunity, 0.15-80 <br> MHz, 10V/m unmod. RMS, Criteria A <br> IEC 61000-4-8:2009/EN 61000-4-8:2010 Magnetic Immunity, Not <br> applicable to Extreme's equipment <br> IEC 61000-4-11:2004/EN 61000-4-11:2004 <br> Power Dips \& Interruptions, >30\%, 25 periods, Criteria C |
| Country-specific | VCCI Class A (Japan Emissions) <br> ACMA (C-Tick) (Australia Emissions) <br> CCC Mark <br> KCC Mark, EMC Approval (Korea) |

Table 180: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)
MEF 9 compliant
MEF 14 compliant

Table 181: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3at PoE Plus

Table 182: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5 G |
| :---: | :---: |
| Operating conditions | Temperature: <br> X430-8p: <br> $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ <br> X430-24t, X430-24p, X430-48t: <br> $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ <br> Humidity: 10\% to 95\% relative humidity, non-condensing Altitude: <br> X430-8p: 0 to 3,048 meters ( 10,000 feet) <br> X430-24t: 0 to 4,000 meters ( 13,123 feet) <br> X430-24p: 0 to 2,000 meters ( 6,567 feet) <br> X430-48t: 0 to 3,000 meters ( 9,850 feet) <br> Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks <br> Random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches ( $<15 \mathrm{~kg} \mathrm{box}$ ) |

## Summit X440 Series Switches Technical Specifications

The Summit X440 series includes the following switches:

- Summit X440-8t
- Summit X440-8p
- Summit X440-24t
- Summit X440-24tDC
- Summit X440-24X
- Summit X440-L2-24t
- Summit X440-24p
- Summit X440-24t-10G
- Summit X440-24p-10G
- Summit X440-24x-10G
- Summit X440-48t
- Summit X440-48tDC
- Summit X440-L2-48t
- Summit X440-48p
- Summit X440-48t-10G switch
- Summit X440-48p-10G switch

Table 183: Physical Dimensions

| Summit X440-8t switch Summit X440-8p switch | Height: 1.73 inches ( 4.4 cm ) <br> Width: 12.0 inches ( 30.5 cm ) <br> Depth: 10.3 inches ( 26.1 cm ) |
| :---: | :---: |
| Summit $\times 440-24 t$ switch | Height: 1.73 inches ( 4.4 cm ) |
| Summit $\times 440-24 \mathrm{tDC}$ switch | Width: 17.4 inches ( 44.1 cm ) |
| Summit $\mathrm{X} 440-\mathrm{L} 2-24 \mathrm{t}$ switch | Depth: 10.0 inches ( 25.4 cm ) |
| Summit $\times 440-24 \mathrm{p}$ switch |  |
| Summit $X 440-24 \times$ switch |  |
| Summit $\times 440-24 t-10 \mathrm{G}$ switch |  |
| Summit $\times 440-24 \mathrm{p}-10 \mathrm{G}$ switch |  |
| Summit X440-24x-10G switch |  |
| Summit $\times 440-48 \mathrm{t}$ switch |  |
| Summit $\times 440-48 \mathrm{tDC}$ switch |  |
| Summit $\times 440-L 2-48$ t switch |  |
| Summit $\times 440-48 \mathrm{p}$ switch |  |
| Summit $\times 440-48 \mathrm{t}-10 \mathrm{G}$ switch |  |
| Summit $\times 440-48 \mathrm{p}-10 \mathrm{G}$ switch |  |

Table 184: Weight

| Summit X440-8t switch | $5.8 \mathrm{lb}(2.64 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X440-8p switch | $6.7 \mathrm{lb}(3.04 \mathrm{~kg})$ |
| Summit $\times 440-24 \mathrm{t}$ switch <br> Summit X440-L2-24t switch | $8.4 \mathrm{lb}(3.83 \mathrm{~kg})$ |
| Summit X440-24tDC | $8.47 \mathrm{lb}(3.84)$ |
| Summit $\times 440-24 \mathrm{p}$ switch <br> Summit X440-24x switch | $9.8 \mathrm{lb}(4.47 \mathrm{~kg})$ |
| Summit X440-24t-10G switch | $8.5 \mathrm{lb}(3.87 \mathrm{~kg})$ |
| Summit $\times 440-24 \mathrm{p}-10 \mathrm{G}$ switch <br> Summit X440-24x-10G switch | $9.8 \mathrm{lb}(4.48 \mathrm{~kg})$ |
| Summit X440-48t switch <br> Summit X440-L2-48t switch | $9.1 \mathrm{lb}(4.13 \mathrm{~kg})$ |
| Summit X440-48tDC | $9.13 \mathrm{lb}(4.14 \mathrm{~kg})$ |
| Summit X440-48p switch | $10.7 \mathrm{lb}(4.85 \mathrm{~kg})$ |
| Summit X440-48t-10G switch | $9.1 \mathrm{lb}(4.13 \mathrm{~kg})$ |
| Summit X440-48p-10G switch | $10.6 \mathrm{lb}(4.83 \mathrm{~kg})$ |

Table 185: Packaged Dimensions

| Summit X440-8t switch Summit X440-8p switch | Height: 3.31 inches ( 8.4 cm ) <br> Width 14.8 inches ( 37.5 cm ) <br> Depth: 24.1 inches ( 61.2 cm ) |
| :---: | :---: |
| Summit $\times 440-24 t$ switch Summit X440-24tDC switch Summit X440-L2-24t switch Summit $\times 440-24 p$ switch Summit X440-24x switch Summit X440-24t-10G switch Summit $X 440-24 p-10 G$ switch Summit X440-24x-10G switch Summit $\times 440-48$ t switch Summit X440-48t DC switch Summit X440-L2-48t switch Summit $\times 440-48$ p switch Summit $\times 440-48 \mathrm{t}-10 \mathrm{G}$ switch Summit X440-48p-10G switch | Height: 5.12 inches ( 13.2 cm ) <br> Width: 22.13 inches ( 56.2 cm ) <br> Depth: 15.16 inches ( 38.5 cm ) |

Table 186: Packaged Weight

| Summit X440-8t switch | $8.29 \mathrm{lb}(3.76 \mathrm{~kg})$ |
| :---: | :---: |
| Summit X440-8p switch | $9.17 \mathrm{lb}(4.16 \mathrm{~kg})$ |
| Summit $\times 440-24 t$ switch <br> Summit X440-L2-24t switch <br> Summit X440-24x switch | $11.1 \mathrm{lb}(5.05 \mathrm{~kg})$ |
| Summit X440-24tDC | 10.3 ( 4.69 kg ) |
| Summit $\mathrm{X} 440-24 \mathrm{p}$ switch | $12.5 \mathrm{lb}(5.65 \mathrm{~kg})$ |
| Summit X440-24t-10G switch | $11.1 \mathrm{lb}(5.02 \mathrm{~kg})$ |
| Summit X440-24p-10G switch Summit X440-24x-10G switch | 12.5 lb ( 5.68 kg ) |
| Summit $\times 440-48$ switch Summit X440-L2-48t switch | $11.7 \mathrm{lb}(5.31 \mathrm{~kg})$ |
| Summit X440-48tDC | $11.0 \mathrm{lb}(4.99 \mathrm{~kg})$ |
| Summit X440-48p switch | $13.3 \mathrm{lb}(6.02 \mathrm{~kg})$ |
| Summit X440-48t-10G switch | $11.7 \mathrm{lb}(5.30 \mathrm{~kg})$ |
| Summit X440-48p-10G switch | $13.3 \mathrm{lb}(6.02 \mathrm{~kg})$ |

Table 187: Fan Speed

|  | Note: <br> Summit fans have the ability to change speeds depending upon <br> operating conditions. |
| :--- | :--- |
| Summit X440-8t switch | Low speed: 0 RPM, High speed: 0 RPM (No fan) |
| Summit X440-8p switch | Low speed: 6800 RPM, High speed: 11000 RPM |

Table 187: Fan Speed (continued)

| Summit X440-24t switch | Low speed: 0 RPM, High speed 11000 RPM |
| :---: | :---: |
| Summit $\times 440-24 \mathrm{tDC}$ switch | Low speed: 0 RPM, High speed 11000 RPM |
| Summit X440-L2-24t switch | Low speed: 0 RPM, High speed 11000 RPM |
| Summit $\times 440-24 \times$ switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit $\times 440-24 p$ switch | Low speed: 5900 RPM, High speed: 11000 RPM |
| Summit X440-24t-10G switch | Low speed: 0 RPM, High speed: 11000 RPM |
| Summit X440-24p-10G switch | Low speed: 5900 RPM, High speed: 11000 RPM |
| Summit X440-24x-10G | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit X440-48t switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit $\times 440-48 t D C$ switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit X440-L2-48t switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit $\times 440-48 \mathrm{p}$ switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit $\times 440-48 \mathrm{t}-10 \mathrm{G}$ switch | Low speed: 5900 RPM, High speed 11000 RPM |
| Summit X440-48p-10G switch | Low speed: 5900 RPM, High speed: 11000 RPM |

Table 188: Acoustic Sound

| Summit X440-8t switch | Low speed: $0 \mathrm{~dB}(\mathrm{~A})$, High speed: $0 \mathrm{~dB}(\mathrm{~A})$ (No fan) |
| :---: | :---: |
| Summit $\times 440-8 \mathrm{p}$ switch | Low speed: $44 \mathrm{~dB}(\mathrm{~A})$, High speed: $55 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-24t switch Summit X440-L2-24t switch Summit X440-24tDC switch | Low speed: $0 \mathrm{~dB}(\mathrm{~A})$ (fan not on), High speed: $51.6 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-24x | Low speed: 0 bels, High speed: 6.5 bels, Declared Sound Power (LWAd) Low speed: $0 \mathrm{~dB}(\mathrm{~A})$, High speed: $62.4 \mathrm{~dB}(\mathrm{~A})$, Sound Power (LWAm) Low speed: 0 dB(A), High speed: 51.7 dB(A), Sound Pressure (LpA) |
| Summit $\times 440-24 p$ switch | Low speed: $46.3 \mathrm{~dB}(\mathrm{~A})$, High speed: $56.1 \mathrm{~dB}(\mathrm{~A})$ |
| Summit $\times 440-24 t-10 \mathrm{G}$ switch | Low speed: $0 \mathrm{~dB}(\mathrm{~A})$ (fan not on), High speed: $51.6 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-24x-10G | Low speed: 5.5 bels, High speed: 6.6 bels, Declared Sound Power (LWAd) <br> Low speed: 51.6 dB(A), High speed: $62.9 \mathrm{~dB}(\mathrm{~A})$, Sound Power (LWAm) Low speed: $41.2 \mathrm{~dB}(\mathrm{~A})$, High speed: $52.4 \mathrm{~dB}(\mathrm{~A})$, Sound Pressure (LpA) |
| Summit X440-24p-10G switch | Low speed: $42 \mathrm{~dB}(\mathrm{~A})$, High speed: $57 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-48t switch Summit X440-L2-48t switch | Low speed: $39 \mathrm{~dB}(\mathrm{~A})$, High speed: $55 \mathrm{~dB}(\mathrm{~A})$ |
| Summit $\times 440-48 \mathrm{tDC}$ switch | Low speed: $39 \mathrm{~dB}(\mathrm{~A})$, High speed: $52.1 \mathrm{~dB}(\mathrm{~A})$ |
| Summit $\times 440-48 \mathrm{p}$ switch | Low speed: $42 \mathrm{~dB}(\mathrm{~A})$, High speed: $57 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-48t-10G switch | Low speed: $39 \mathrm{~dB}(\mathrm{~A})$, High speed: $55 \mathrm{~dB}(\mathrm{~A})$ |
| Summit X440-48p-10G switch | Low speed: $42 \mathrm{~dB}(\mathrm{~A})$, High speed: $57 \mathrm{~dB}(\mathrm{~A})$ |

Table 189: PSUs and X440 Models

| 60W | 100W | 250W POE | 525 W POE |
| :---: | :---: | :---: | :---: |
| X440-8t | X440-24t | X440-8p | X440-24p |
|  | X440-24t-10G |  | X440-24p-10G |
|  | X440-24x |  | X440-48p |
|  | X440-24x-10G |  | X440-48p-10G |
|  | X440-48t |  |  |
|  | X440-48t-10G |  |  |

Table 190: Power: Summit X440-8t

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.50 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.35 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.23 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $60 \mathrm{~A} \mathrm{@} \mathrm{230VAC} \mathrm{(25C)}$ |
| Heat dissipation | $39 \mathrm{~W}, 133 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $39 \mathrm{~W}, 133 \mathrm{BTU} / \mathrm{hr}$ |

Table 191: Power: Summit X440-8p

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.2 \mathrm{~A} \mathrm{@} 110 \mathrm{~V} \sim$ (low-line) |
|  | $1.1 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $40 \mathrm{~A} @ 115 \mathrm{VAC} 60 \mathrm{~Hz}(25 \mathrm{C})$ |
|  | $70 \mathrm{~A} \mathrm{@} \mathrm{230VAC} \mathrm{50} \mathrm{Hz} \mathrm{(25C)}$ |
| Heat dissipation | $81 \mathrm{~W}, 276 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $251 \mathrm{~W}, 856 \mathrm{BTU} / \mathrm{hr}$ |

Table 192: Power: Summit X440-24t and X440-L2-24t

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.40 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.20 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |

Table 193: Power: Summit X440-24tDC

| Nominal input ratings | -36 V to $-72 \mathrm{~V}, 1.25 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $38 \mathrm{~W}, 129 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $38 \mathrm{~W}, 129 \mathrm{BTU} / \mathrm{hr}$ |

Table 194: Power: Summit X440-24p

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.3 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) <br> $2.65 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} @ 115 \mathrm{VAC} 60 \mathrm{~Hz}(25 \mathrm{C})$ <br> $60 \mathrm{~A} @ 230 \mathrm{VAC} 50 \mathrm{~Hz}(25 \mathrm{C})$ |
| With PoE |  |
| Heat dissipation | $205 \mathrm{~W}, 700 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $585 \mathrm{~W}, 2000 \mathrm{BTU} / \mathrm{hr}$ |
| Without PoE |  |
| Heat dissipation | $37 \mathrm{~W}, 126 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $37 \mathrm{~W}, 126 \mathrm{BTU} / \mathrm{hr}$ |

Table 195: Power: Summit X440-24x

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.48 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.27 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} \mathrm{@} \mathrm{115VAC} \mathrm{60Hz(25C)}$ |
|  | $40 \mathrm{~A} @ 230 \mathrm{VAC} 50 \mathrm{~Hz}(25 \mathrm{C})$ |
| Heat dissipation | $54 \mathrm{~W}, 184 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $54 \mathrm{~W}, 184 \mathrm{BTU} / \mathrm{hr}$ |

Table 196: Power: Summit X440-24t-10G

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.4 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.2 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} @ 115 \mathrm{VAC} 60 \mathrm{~Hz}(25 \mathrm{C})$ |
|  | $40 \mathrm{~A} @ 230 \mathrm{VAC} 50 \mathrm{~Hz}(25 \mathrm{C})$ |
| Heat dissipation | $44 \mathrm{~W}, 150 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $44 \mathrm{~W}, 150 \mathrm{BTU} / \mathrm{hr}$ |

Table 197: Power: Summit X440-24p-10G

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.3 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $2.65 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} @ 115 \mathrm{VAC} 60 \mathrm{~Hz}(25 \mathrm{C})$ |
|  | $60 \mathrm{~A} @ 230 \mathrm{VAC} \mathrm{50} \mathrm{Hz} \mathrm{(25C)}$ |
| Heat dissipation | $205 \mathrm{~W}, 700 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $585 \mathrm{~W}, 2000 \mathrm{BTU} / \mathrm{hr}$ |

Table 198: Power: Summit X440-24x-10G

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 0.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.5 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.3 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} \mathrm{@} \mathrm{115VAC60} \mathrm{~Hz} \mathrm{(25C)}$ |
|  | $40 \mathrm{~A} @ 230 \mathrm{VAC} \mathrm{50} \mathrm{Hz} \mathrm{(25C)}$ |
| Heat dissipation | $56 \mathrm{~W}, 191 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $56 \mathrm{~W}, 191 \mathrm{BTU} / \mathrm{hr}$ |

Table 199: Power: Summit X440-48t and X440-L2-48t

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.85 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.50 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |

Table 200: Power: Summit X440-48tDC

| Nominal input ratings | -36 V to $-72 \mathrm{~V}, 2.0 \mathrm{~A}$ |
| :--- | :--- |
| Heat dissipation | $57 \mathrm{~W}, 195 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $57 \mathrm{~W}, 195 \mathrm{BTU} / \mathrm{hr}$ |

Table 201: Power: Summit X440-48p

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6.25 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.5 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $2.75 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |
| Maximum inrush current | $30 \mathrm{~A} @ 115 \mathrm{VAC} 60 \mathrm{~Hz}(25 \mathrm{C})$ |
|  | $60 \mathrm{~A} @ 230 \mathrm{VAC} 50 \mathrm{~Hz}(25 \mathrm{C})$ |

Table 201: Power: Summit X440-48p (continued)

| With PoE |  |
| :--- | :--- |
| Heat dissipation | $220 \mathrm{~W}, 750 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $600 \mathrm{~W}, 2050 \mathrm{BTU} / \mathrm{hr}$ |
| Without PoE | $78 \mathrm{~W}, 266 \mathrm{BTU} / \mathrm{hr}$ |
| Heat dissipation | $78 \mathrm{~W}, 266 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption |  |

Table 202: Power: Summit X440-48t-10G

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.85 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $0.5 \mathrm{~A} @ 220 \mathrm{~V} \sim$ (high-line) |

Table 203: Power: Summit X440-48p-10G

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6.25 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.5 \mathrm{~A} @ 110 \mathrm{~V} \sim$ (low-line) |
|  | $2.75 \mathrm{~A} \mathrm{@} \mathrm{220} \mathrm{V~} \mathrm{(high-line)}$ |
| Maximum inrush current | $30 \mathrm{~A} \mathrm{@} \mathrm{115VAC} \mathrm{60} \mathrm{Hz} \mathrm{(25C)}$ $60 \mathrm{~A} @ 230 \mathrm{VAC} 50 \mathrm{~Hz}(25 \mathrm{C})$ <br> Heat dissipation $220 \mathrm{~W}, 750 \mathrm{BTU} / \mathrm{hr}$ <br> Power consumption $600 \mathrm{~W}, 2050 \mathrm{BTU} / \mathrm{hr}$ |

Table 204: CPU, Memory

| CPU/Memory |
| :--- | :--- |
| 500 MHz CPU |
| 512 MB Memory |
| 1.5 MB packet buffer per chip |

Table 205: Safety Standards

| North American Safety of ITE | UL 60950-1 2nd Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-03 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
| European Safety of ITE | EN 60950-1:2007 2nd Ed. |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 2006/95/EC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1 2nd Ed. + National Differences |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 206: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | FCC CFR 47 part 15 Class A (USA) |
|  | ICES-003 Class A (Canada) |
|  | 2004/108/EC EMC Directive |
|  | EN 55022:2010 Class A (Emissions for ITE Equipment) |
|  | EN 55024:2010 Class A includes EN 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 55011:2009+A1:2010 (Emissions for Industrial, Scientific \& Medical |
|  | Radio Frequency Equipment) |
|  | EN 61000-3-2: 2006+A2 2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | EN 61000-6-4: $2007+$ A1: 2011 (General Emissions for Industrial, Scientific |
|  | $\&$ Medical) |
|  |  |
|  | Medical) |
|  | EN 50121-4:2006 (Emission and immunity of the signaling and |
|  | telecommunications apparatus) |
|  |  |

Table 206: EMI/EMC Standards (continued)

| International EMC certifications | CISPR 22:2008 Class A (International Emissions for ITE Equipment) |
| :--- | :--- |
|  | CISPR 24:2010 Class A (International Immunity for ITE Equipment) |
|  | IEC 61000-4-2:2008/EN 61000-4-2:2009 (Electrostatic Discharge, 8kV |
|  | Contact, 15kV Air, Criteria A) |
|  | IEC 61000-4-3:2010/EN 61000-4-3:2006+A12008 +A2:2010 |
|  | Radiated Immunity 20V/m, 80-960MHz, Criteria A |
|  | Radiated Immunity 10V/m, 960-2100MHz, Criteria A |
|  | Radiated Immunity 5V/m, 2100-2700MHz, Criteria A |
|  | IEC 61000-4-4:2011/EN 61000-4-4: 2004+A1: 2010 Transient Burst, |
|  | Power AC, $\pm 2.0 \mathrm{kV}$, Criteria A |
|  | Power DC, $\pm 2.0 \mathrm{kV}$ CM, 1kV DM, Criteria A |
|  | I/O Cables, $\pm 2.0 \mathrm{kV}$ for all I/O Ionger than 3m |
|  | IEC 61000-4-5:2005/EN 61000-4-5:2006 Surge, Test to 2/4kV, Level 3 |
|  | AC Power, 1kV DM, 2kV CM, Criteria A |
|  | DC Power 1kV DM, 2kV CM, Criteria A |
|  | I/O 1kV L-G, Criteria A |
|  | IEC 61000-4-6:2008/EN 61000-4-6:2009 Conducted Immunity, 0.15-80 |
|  | MHz, 10V/m unmod. RMS, Criteria A |
|  | IEC 61000-4-8:2009/EN 61000-4-8:2010 Magnetic Immunity, Not |
|  | applicable to Extreme's equipment |
|  | IEC 61000-4-11:2004/EN 61000-4-11:2004 |
|  | Power Dips \& Interruptions, >30\%, 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark |
|  | KCC Mark, EMC Approval (Korea) |

## Table 207: Telecom Standards

ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300 019 (Environmental for Telecommunications)
MEF 9 compliant
MEF 14 compliant

Table 208: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3at PoE Plus
IEEE 802.3i 10BASE-T
IEEE 802.3u 100BASE-TX
IEEE 802.3ae 10GBASE-T

Table 209: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5 G |
| :---: | :---: |
| Operating conditions | Temperature: $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ Humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, <br> 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches (<15 kg box) |

## Summit X450 Series Switches Technical Specifications

The Summit X 450 series includes the following switches:

- Summit X450-24t switch
- Summit X450-24x switch

Summit X450 Series Switch Technical Specifications

Table 210: Physical Dimensions

| Summit X450-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit $\times 450-24 \times$ switch | Width: 17.35 inches $(44.1 \mathrm{~cm})$ |
|  | Depth: 16.38 inches $(41.6 \mathrm{~cm})$ |

## Table 211: Weight

| Summit $\times 450-24 \mathrm{t}$ switch | $14 \mathrm{lb}(6.35 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 450-24 \times$ switch | $13.8 \mathrm{lb}(6.26 \mathrm{~kg})$ |

Table 212: Power

| Summit switch | Auto-ranging 100 V to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ |
| :--- | :--- |
| Min voltage/associated current | 1.5 A at 100 V |
| Max voltage/associated current | 1 A at 240 VAC |
| Line frequency | 50 to 60 Hz |

Table 212: Power (continued)

| Heat dissipation, Watts/BTU | $160 \mathrm{~W} / 546 \mathrm{BTU} / \mathrm{hr}$ |
| :--- | :--- |
| Power supply cord selection | Refer to Power Cord Requirements for AC-Powered Switches and AC Power <br> Supplies on page 543. |

Table 213: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | NOM/NYCE (Mexico) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 73/23/EEC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 214: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) <br>  <br> ICES-003 Class A (Canada) |
| :--- | :--- |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | 89/336/EEC EMC Directive |
| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV, 4kV, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. RMS, |
|  | Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (South Korea) |

Table 215: Telecom Standards

Table 216: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range $0{ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity:10\% to $95 \%$ relative humidity, non-condensing Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), 11ms, 18 shocks Random vibration: 3 to $500 \mathrm{~Hz} @ 1.5$ G rms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $100 \mathrm{~m} / \mathrm{s}^{2}$ (6 G), $6 \mathrm{~ms}, 600$ shocks Packaged random vibration: 5 to 200 Hz @ 1.0 ASD ( $1 \mathrm{~m}^{2} / \mathrm{s}^{2}$ ), w/-3 dB/octave <br> 14 drops minimum on sides \& corners @ 36 inches (<15 kg box) |

Table 217: Acoustic Sound

| Sound power in accordance with <br> EN 300753 (10-1997) | Sound power: 61 dBA per ISO 7779 <br> Declared sound power: 6.3 belsA per ISO 7779 \& ISO 9296 |
| :--- | :--- |
| Sound pressure in accordance <br> with NEBS GR-63 Issue 2 | Bystander sound pressure: 49 dBA rear @ 0.6 m |

## Summit X450a Series Switches Technical Specifications

The Summit X450a series includes the following switches:

- Summit X450a-24t switch
- Summit X450a-24tDC switch
- Summit X450a-24x switch
- Summit X450a-24xDC switch
- Summit X450a-48t switch

Table 218: Physical Dimensions

| Summit X450a-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X450a-24tDC switch | Width: 17.4 inches $(44.1 \mathrm{~cm})$ |
| Summit X450a-24x switch | Depth: 15.3 inches $(38.9 \mathrm{~cm})$ |
| Summit X450a-24xDC switch |  |
| Summit X450a-48t switch Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br> Summit X450a-48tDC switch Width: 17.4 inches $(44.1 \mathrm{~cm})$ <br>  Depth: 17.0 inches $(43.2 \mathrm{~cm})$ |  |

Table 219: Weight

| Summit X450a-24t switch | $13.8 \mathrm{lb}(6.24 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X450a-24tDC switch | $12.3 \mathrm{lb}(5.56 \mathrm{~kg})$ |

Table 219: Weight (continued)

| Summit X450a-24x switch | $13.0 \mathrm{lb}(5.9 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X450a-24xDC switch | $12.50 \mathrm{lb}(5.67 \mathrm{~kg})$ |
| Summit X450a-48t switch | $15.8 \mathrm{lb}(7.14 \mathrm{~kg})$ |
| Summit X450a-48tDC switch | $15.5 \mathrm{lb}(7.03 \mathrm{~kg})$ |

Table 220: Packaged Dimensions

| Summit X450a-24t switch <br> Summit X450a-24tDC switch <br> Summit X450a-24x switch <br> Summit X450a-24xDC switch <br> Summit X450a-48t switch <br> Summit X450a-48tDC switch | Height: 5.9 inches $(15 \mathrm{~cm})$ <br> Width: 22.4 inches $(57 \mathrm{~cm})$ <br> Depth: 21.7 inches $(55 \mathrm{~cm})$ |
| :--- | :--- |

Table 222: Fan Speed

| Delta Blower | 2900 RPM/11.3 CFM |
| :--- | :--- |
| Sunon Fan | 7200 RPM/8.9 CFM |

Table 223: Summit X450a-24t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Input current | $1.0 \mathrm{~A} @ 115 \mathrm{~V} \sim$ (low-line) <br> $0.5 \mathrm{~A} \mathrm{@} 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 Cl 4 |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC |

Table 223: Summit X450a-24t Power (continued)

| Power supply cord gauge | 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br> or <br> 16 AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ over 6 feet |
| :--- | :--- |
| Efficiency | $80 \%$ with $60 \%$ to $100 \%$ load |
| Heat dissipation | $100 \mathrm{~W}(341.2 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption | $100 \mathrm{~W}(341.2 \mathrm{BTU} / \mathrm{hr})$ |

Table 224: Summit X450a-24tDC Power

| Operational voltage range | -36 to $-72 \mathrm{~V}=-=$ | | | | |
|---|---|---|---|---|---|
| Nominal input ratings | $-48 \mathrm{~V}=-=, 2.0 \mathrm{~A}$ |
| Nominal input current | $2.0 \mathrm{~A} @-36 \mathrm{~V}=-=$ (low-line) |
| $1.0 \mathrm{~A} @-72 \mathrm{~V}=-=$ (high-line) |  |$|$| Inrush current | $20 \mathrm{~A} @ 48 \mathrm{~V}, 30 \mathrm{~A} @ 72 \mathrm{~V}$ |
| :--- | :--- |
| Power supply cord type | DC |
| Power supply input socket | TYCO PN 206061-1 |
| Power cord input plug | TYCO PN 206060-1 |
| Power cord wall plug | None provided |
| Power supply cord gauge | $14 \mathrm{AWG}(2.0 \mathrm{~mm} 2)$ |
| Heat dissipation, Watts, BTU | $75 \mathrm{~W}, 255.9 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption, Watts, BTU | $75 \mathrm{~W}, 255.9 \mathrm{BTU} / \mathrm{hr}$ |

Table 225: Summit X450a-48t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.5 \mathrm{~A}$ |
| Nominal input current | $\begin{aligned} & 1.45 \text { A @ } 115 \text { V~ (low-line) } \\ & 0.65 \text { A @ } 230 \text { V (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 80\% with $60 \%$ to $100 \%$ load |

Table 225: Summit X450a-48t Power (continued)

| Heat dissipation | $160 \mathrm{~W}(512 \mathrm{BTU} / \mathrm{hr})$ |
| :--- | :--- |
| Power consumption, Watts, BTU | $160 \mathrm{~W}(512 \mathrm{BTU} / \mathrm{hr})$ |

Table 226: Summit X450a-48tDC Power

| Operational voltage range | -36 to $-72 \mathrm{~V}=-$ |
| :--- | :--- |
| Nominal input voltage | $-48 \mathrm{~V}=-\mathrm{-}, 4.5 \mathrm{~A}$ |
| Input current | $4.0 \mathrm{~A} \mathrm{@}-36 \mathrm{VDC}$ (low-line) |
|  | $2.0 \mathrm{~A} @-72 \mathrm{VDC}$ (high-line) |
| Inrush current | $29 \mathrm{~A} @ 48 \mathrm{~V}, 30 \mathrm{~A} @ 72 \mathrm{~V}$ |
| Input wire harness | Extreme part number 250088 |
| Power supply cord gauge | $14 \mathrm{AWG}\left(2.0 \mathrm{~mm}^{2}\right)$ |
| Power cord input plug | TYCO PN 206060-1 |
| Power supply input socket | TYCO PN 206061-1 |

Table 227: Summit X450a-24x Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.5 \mathrm{~A}$ |
| Nominal input current | 1.0 A @ 115 V ~ (low-line) 0.5 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 80\% with $60 \%$ to $100 \%$ load |
| Heat dissipation | 80 W (273 BTU/hr) |
| Power consumption | 80 W (273 BTU/hr) |

Table 228: Summit X450a-24xDC Power

| Operational voltage range | -36 to $-72 \mathrm{~V}=-=$ |
| :--- | :--- |
| Nominal input ratings | $-48 \mathrm{~V}=-=2.5 \mathrm{~A}$ |

Table 228: Summit X450a-24xDC Power (continued)

| Input current | $\begin{aligned} & \text { 2.5 A @ -36 V== (low-line) } \\ & 1.25 \mathrm{~A} @-72 \mathrm{~V}==\text { (high-line) } \end{aligned}$ |
| :---: | :---: |
| Inrush current | 40 A peak maximum |
| Input wire harness | Extreme Networks PN 250088 |
| Power supply input socket | TYCO PN 206061-1 |
| Power cord input plug | TYCO PN 206060-1 |
| Power cord wall plug | None provided |
| Power supply cord gauge | 14 AWG (2.0 mm²) |
| Heat dissipation | 98 W (334 BTU/hr) |
| Power consumption | 98 W (334 BTU/hr) |

Table 229: CPU, Memory
CPU/Memory
400 MHz CPU

Table 230: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | $73 / 23 / E E C$ Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 231: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | 89/336/EEC EMC Directive |
|  |  |

Table 231: EMI/EMC Standards (continued)

| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
| :--- | :--- |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, Criteria |
|  | A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, Criteria |
|  | C |
| Country-specific | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (South Korea) |
|  |  |

Table 232: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)

Table 233: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 234: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity: 10\% to $93 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to 500 Hz @ 1.5 G rms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz @ 0.2 G <br> Packaged random vibration: 5 to 20 Hz @ 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches (<15 kg box) |

Table 234: Environmental Data (continued)

| Sound power in accordance with EN <br> 300753 (10-1997) | Sound power: 62 dBA per ISO 7779 <br> Declared sound power: 6.4 belsA per ISO 7779 \& ISO 9296 |
| :--- | :--- |
| Bystander sound pressure in Bystander sound pressure: 54 dBA right side @ 0.6 m <br> accordance with NEBS GR-63 Issue 2  <br> Summit X450a-24t and X450a-48t  |  |

## Summit X450e Series Switches Technical Specifications

The Summit X 450 e series includes the following switches:

- Summit X450e-24p switch
- Summit X450e-48p switch
- Summit X450e-24t switch
- Summit X450e-48t switch

Table 235: Physical Dimensions

| Summit X450e-24p switch | Height: 1.73 inches ( 4.4 cm ) <br> Width: 17.35 inches ( 44.1 cm ) <br> Depth: 15.30 inches ( 38.7 cm ) |
| :---: | :---: |
| Summit X450e-48p switch | Height: 1.73 inches ( 4.4 cm ) <br> Width: 17.35 inches ( 44.1 cm ) <br> Depth: 17 inches ( 43.2 cm ) |
| Summit X450e-24t switch | Height: 1.73 inches ( 4.4 cm ) <br> Width: 17.35 inches ( 44.1 cm ) <br> Depth: 15.3 inches ( 38.9 cm ) |
| Summit X450e-48t switch | Height: 1.73 inches ( 4.4 cm ) <br> Width: 17.35 inches ( 44.1 cm ) <br> Depth: 17.0 inches ( 43.2 cm ) |

Table 236: Weight

| Summit $\times 450 \mathrm{e}-24 \mathrm{p}$ switch | $14 \mathrm{lb}(6.4 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 450 \mathrm{e}-48 \mathrm{p}$ switch | $16.25 \mathrm{lb}(7.4 \mathrm{~kg})$ |
| Summit $\times 450 \mathrm{e}-24 \mathrm{t}$ switch | $11.8 \mathrm{lb}(5.4 \mathrm{~kg})$ |
| Summit $\times 450 \mathrm{e}-48 \mathrm{t}$ switch | $15.75 \mathrm{lb}(7.14 \mathrm{~kg})$ |

Table 237: Packaged Dimensions

Summit $X 450 e-24 p$ switch
Summit $\times 450 e-48 p$ switch

Height: 5.9 inches ( 15 cm )
Width: 22.4 inches ( 57 cm )
Depth: 21.7 inches ( 55 cm )

Table 238: Packaged Weight

| Summit $\times 450 \mathrm{e}-24 \mathrm{p}$ switch | $18.9 \mathrm{lb}(8.6 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 450 \mathrm{e}-48 \mathrm{p}$ switch | $21 \mathrm{lb}(9.6 \mathrm{~kg})$ |
| Summit $\times 450 \mathrm{e}-24 \mathrm{t}$ switch | $26.8 \mathrm{lb}(12.16 \mathrm{~kg})$ |
| Summit $\times 450 \mathrm{e}-48 \mathrm{t}$ switch | $29.9 \mathrm{lb}(13.6 \mathrm{~kg})$ |

Table 239: Summit X450e-24p Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.25 \mathrm{~A}$ |
| Input current | $\begin{aligned} & \text { 4.25 A @ } 115 \text { V~ (low-line) } \\ & 2.0 \text { A @ } 230 \text { V~ (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ 115 V, 60 A @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 80\% with $60 \%$ to $100 \%$ load |
| Heat dissipation with PoE full load | 120 W (410 BTU/hr) |
| Power consumption with PoE full load | 488 W (1,665 BTU/hr) |
| Heat dissipation without PoE | 54 W (184 BTU/hr) |
| Power consumption without PoE | 54 W (184 BTU/hr) |

Table 240: Summit X450e-48p Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6.0 \mathrm{~A}$ |
| Nominal input current | $5.25 \mathrm{~A} @ 115 \mathrm{~V} \sim$ (low-line) |
|  | $2.5 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power cord input plug | IEC 320 C 13 |

Table 240: Summit X450e-48p Power (continued)

| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| :--- | :--- |
| Power supply cord gauge | 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br> or <br> 16 AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ over 6 feet |
| Efficiency | $80 \%$ with $60 \%$ to $100 \%$ load |
| Heat dissipation with PoE full load | $180 \mathrm{~W}(614 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption with PoE full load | $507 \mathrm{~W}(1,730 \mathrm{BTU} / \mathrm{hr})$ |
| Heat dissipation without PoE | $73 \mathrm{~W}(250 \mathrm{BTU} / \mathrm{hr})$ |
| Power consumption without PoE | $73 \mathrm{~W}(250 \mathrm{BTU} / \mathrm{hr})$ |

Table 241: Summit X450e-24t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| Nominal input current | $\begin{aligned} & 0.52 \text { A @ } 100 \text { V~ (low-line) } \\ & 0.31 \text { A @ } 240 \text { V~ (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Inrush current | 30 A @ $115 \mathrm{~V}, 60 \mathrm{~A}$ @ 230 V |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power cord input plug | IEC 320 C 13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Heat dissipation, Watts, BTU | 52 W (178 BTU/hr) |
| Power consumption, Watts, BTU | 52 W (178 BTU/hr) |

Table 242: Summit X450e-48t Power

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 6 \mathrm{~A}$ |
| Nominal input current | $0.94 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.43 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $30 \mathrm{~A} @ 115 \mathrm{~V}, 60 \mathrm{~A} @ 230 \mathrm{~V}$ |
| Power supply cord type | AC |

Table 242: Summit X450e-48t Power (continued)

| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| :---: | :---: |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Heat dissipation | 94 W (321 BTU/hr) |
| Power consumption | 94 W (321 BTU/hr) |

Table 243: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 73/23/EEC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 244: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | 89/336/EEC EMC Directive |
| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, |
|  | Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (South Korea) |

Table 245: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)

Table 246: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 247: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity: $10 \%$ to $93 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), $11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to 500 Hz @ 1.5 G rms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ (18 G), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to $500 \mathrm{~Hz} @ 0.2$ G <br> Packaged random vibration: 5 to $20 \mathrm{~Hz} @ 1.0$ ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches ( $<15 \mathrm{~kg}$ box) |
| Acoustic sound | Sound Power in accordance with EN 300753 (10-1997) <br> Sound power: 62 dBA per ISO 7779 <br> Declared sound power: 6.4 belsA per ISO 7779 \& ISO 9296 <br> Bystander Sound Pressure in accordance with NEBS GR-63 Issue 2 <br> Bystander sound pressure: 54 dBA right side @ 0.6 m |

## Summit X450-G2 Series Switches Technical Specifications

The Summit X450-G2 series includes the following switches:

- Summit X450-G2-24t-GE4
- Summit X450-G2-24t-10GE4
- Summit X450-G2-48t-GE4
- Summit X450-G2-48t-10GE4
- Summit X450-G2-24p-GE4
- Summit X450-G2-24p-10GE4
- Summit X450-G2-48p-GE4
- Summit X450-G2-48p-10GE4

Table 248: X450-G2 Unpackaged Dimensions

```
X450-G2-24t-GE4
X450-G2-24t-10GE4
X450-G2-48t-GE4
X450-G2-48t-10GE4
X450-G2-24p-GE4
X450-G2-24p-10GE4
X450-G2-48p-GE4
X450-G2-48p-10GE4
```

Table 249: X450-G2 Unpackaged Weight

| $\begin{aligned} & \text { X450-G2-24t-GE4 } \\ & \text { X450-G2-24t-10GE4 } \end{aligned}$ | $13.71 \mathrm{lb}(6.22 \mathrm{~kg})$ |
| :---: | :---: |
| $\begin{aligned} & \text { X450-G2-48t-GE4 } \\ & \text { X450-G2-48t-10GE4 } \end{aligned}$ | $14.22 \mathrm{lb}(6.45 \mathrm{~kg})$ |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \end{aligned}$ | $13.93 \mathrm{lb}(6.32 \mathrm{~kg})$ |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \end{aligned}$ | $14.51 \mathrm{lb}(6.58 \mathrm{~kg})$ |

Table 250: X450-G2 Packaged Dimensions

```
X450-G2-24t-GE4
X450-G2-24t-10GE4
Height: 6.70 inches (17.02 cm}
Width: 22.85 inches (58.04 cm)
X450-G2-48t-GE4
X450-G2-48t-10GE4
X450-G2-24p-GE4
X450-G2-24p-10GE4
X450-G2-48p-GE4
X450-G2-48p-10GE4
```

Table 251: X450-G2 Packaged Weight

| $\begin{array}{\|l} \text { X450-G2-24t-GE4 } \\ \text { X450-G2-24t-10GE4 } \end{array}$ | $20.72 \mathrm{lb}(9.50 \mathrm{~kg})$ |
| :---: | :---: |
| $\begin{array}{\|l} \hline \text { X450-G2-48t-GE4 } \\ \text { X450-G2-48t-10GE4 } \end{array}$ | $21.23 \mathrm{lb}(9.74 \mathrm{~kg})$ |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \end{aligned}$ | $20.94 \mathrm{lb}(9.61 \mathrm{~kg})$ |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \end{aligned}$ | $21.52 \mathrm{lb}(9.87 \mathrm{~kg})$ |

Table 252: Fan and Acoustic Noise

| Switch Model | Bystander Sound Pressure ${ }^{8}$ | Declared Sound Power ${ }^{9}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { X450-G2-24t-GE4 } \\ & \text { X450-G2-24t-10GE4 } \end{aligned}$ <br> Fixed AC or DC power supply with front-to-back (FB) airflow | $49.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ $64.9 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C}$ | 6.1 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{array}{\|l} \hline \text { X450-G2-48t-GE4 } \\ \text { X450-G2-48t-10GE4 } \end{array}$ <br> Fixed AC or DC power supply with front-to-back (FB) airflow | $49.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ $64.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C}$ | 6.1 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \\ & \text { Dual } 715 \text { W AC or DC power supply with front-to-back } \\ & \text { (FB) airflow } \end{aligned}$ | $\begin{aligned} & \text { 51.1 dB(A), } 0^{\circ} \mathrm{C} \text { to } 39^{\circ} \mathrm{C} \\ & 65.5 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.2 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ <br> 7.7 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \end{aligned}$ <br> Dual 715 W AC or DC power supply with front-to-back (FB) airflow with applied PoE (Power over Ethernet). load | $\begin{aligned} & 50.1 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 39^{\circ} \mathrm{C} \\ & 64.5 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.1 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \\ & \text { Dual 1100 W AC or DC power supply with front-to-back } \\ & \text { (FB) airflow } \end{aligned}$ | $\begin{aligned} & 50.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 39^{\circ} \mathrm{C} \\ & 65.4 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.2 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \end{aligned}$ <br> Dual 1100 W AC or DC power supply with front-to-back (FB) airflow with applied PoE load | $\begin{aligned} & 56.5 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 39^{\circ} \mathrm{C} \\ & 66.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.8 bels, $0^{\circ} \mathrm{C}$ to $39^{\circ} \mathrm{C}$ 7.8 bels, $50^{\circ} \mathrm{C}$ |

## Note

Acoustic noise levels represent noise emitted by the switch at room ambient temperatures. Values are based on a fully configured system consisting of two PSUs operating under full load. Normal operating temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

Table 253: X450-G2 Fan Speed and Power Consumption

| Fan Speed | Fan Module RPM (typical) |  | Power |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Inlet Fan | Outlet Fan | Maximum | Typical |
| Full | $14,000( \pm 15 \%)$ | $7,000( \pm 15 \%)$ | 36 W | 30.6 |
| Low | $6,400( \pm 15 \%)$ | $2,900( \pm 15 \%)$ | 3.96 W (typical) |  |

[^7]
## Power Options

Table 254: X450-G2 Power Supply Options

| Switch Model | Power Supply |
| :---: | :---: |
| Fixed power supply with front-to-back airflow |  |
| $\begin{array}{\|l} \hline \text { X450-G2-24t-GE4 } \\ \text { X450-G2-24t-10GE4 } \end{array}$ | $100-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 1.0 \mathrm{~A}$ |
| $\begin{aligned} & \text { X450-G2-48t-GE4 } \\ & \text { X450-G2-48t-10GE4 } \end{aligned}$ | 100-240 V, 50/60 Hz, 1.0 A |
| Modular power supply with front-to-back airflow |  |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \end{aligned}$ | 1100 W AC PS FB (front-to-back) <br> Part \# 10941, Model: PSSF112101A 100-127V/200-240 V, 50/60 Hz, 10.0 A/5.0 A max per PS |
| $\begin{aligned} & \text { X450-G2-24p-GE4 } \\ & \text { X450-G2-24p-10GE4 } \end{aligned}$ | 715 W AC PS FB (front-to-back) <br> Part \# 10951, Model: PSSF711101A 100-127V/200-240 V, 50/60 Hz, 7.0 A/3.5 A max per PS |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \end{aligned}$ | 1100 W AC PS FB (front-to-back) <br> Part \# 10941, Model: PSSF112101A 100-127V/200-240 V, 50/60 Hz, 12.0 A/6.0 A max per PS |
| $\begin{aligned} & \text { X450-G2-48p-GE4 } \\ & \text { X450-G2-48p-10GE4 } \end{aligned}$ | 715 W AC PS FB (front-to-back) <br> Part \# 10951, Model: PSSF711101A $100-127 \mathrm{~V} / 200-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A} / 4.0 \mathrm{~A}$ max per PS |

Table 255: X450-G2 Power Consumption

| Switch Model | Minimum Heat <br> Dissipation | Minimum Power <br> Consumption | Maximum Heat <br> Dissipation | Maximum Power <br> Consumption |
| :--- | :---: | :---: | :---: | :---: |
| X450-G2-24t-GE4 <br> X450-G2-24t-10GE4 | $149.4 \mathrm{BTU} / \mathrm{hr}$ | 43.8 W | $244.6 \mathrm{BTU} / \mathrm{hr}$ | 71.1 W |
| X450-G2-48t-GE4 <br> X450-G2-48t-10GE4 | $178.1 \mathrm{BTU} / \mathrm{hr}$ | 52.2 W | $290.0 \mathrm{BTU} / \mathrm{hr}$ | 85.0 W |
| X450-G2-24p-GE4 <br> X450-G2-24p-10GE4 | $214.3 \mathrm{BTU} / \mathrm{hr}$ | 62.8 W | $604.7 \mathrm{BTU} / \mathrm{hr}$ | 127.2 W |
| X450-G2-48p-GE4 <br> X450-G2-48p-10GE4 | $238.8 \mathrm{BTU} / \mathrm{hr}$ | 70.0 W | $778 \mathrm{BTU} / \mathrm{hr}$ | 228 W |

Table 256: X450-G2 PoE Power Budget

| Switch Model | 1 PSU of 715 W | 1 PSU of 1100 W | 2 PSUs of 715 W | 1 PSU of $715 \mathrm{~W} \& 1$ <br> PSU of 1100 W | 2 PSUs of 1100 W |
| :--- | :---: | :--- | :---: | :---: | :---: |
| X450-G2-24p-GE4 | 500 W | 720 W | 720 W | 720 W | 720 W |
| X450-G2-24p-10GE4 | 500 W | 720 W | 720 W | 720 W | 720 W |
| X450-G2-48p-GE4 | 500 W | 850 W | 1031 W | 1350 W | 1440 W |

Table 256: X450-G2 PoE Power Budget (continued)

| Switch Model | 1 PSU of 715 W | 1 PSU of 1100 W | 2 PSUs of 715 W | 1 PSU of 715 W \& 1 PSU of 1100 W | 2 PSUs of 1100 W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X450-G2-48p-10GE4 | 500 W | 850 W | 1031 W | 1350 W | 1440 W |
| X450-G2-24p-GE4 | $\begin{gathered} 16 \text { ports@ } 30 \text { W } \\ 24 \text { ports @ } 15.4 \text { W } \end{gathered}$ | $\begin{gathered} 24 \text { ports@ } 30 \text { W } \\ 24 \text { ports @ } 15.4 \text { W } \end{gathered}$ | $\begin{gathered} 24 \text { ports@30 W } \\ 24 \text { ports@15.4 W } \end{gathered}$ | 24 ports @ 30 W <br> 24 ports @ 15.4 W | $\begin{aligned} & 24 \text { ports @ } 30 \text { W } \\ & 24 \text { ports @ } 15.4 \text { W } \end{aligned}$ |
| X450-G2-24p-10GE4 | $\begin{gathered} 16 \text { ports@ } 30 \text { W } \\ 24 \text { ports @ } 15.4 \text { W } \end{gathered}$ | $\begin{gathered} 24 \text { ports@ } 30 \text { W } \\ 24 \text { ports @ } 15.4 \text { W } \end{gathered}$ | 24 ports @ 30 W <br> 24 ports @ 15.4 W | 24 ports @ 30 W <br> 24 ports @ 15.4 W | $\begin{aligned} & 24 \text { ports @ } 30 \text { W } \\ & 24 \text { ports @ } 15.4 \text { W } \end{aligned}$ |
| X450-G2-48p-GE4 | $\begin{aligned} & 16 \text { ports @ } 30 \text { W } \\ & 32 \text { ports @ } 15.4 \text { W } \end{aligned}$ | $\left\|\begin{array}{c} 28 \text { ports @ } 30 \text { W } \\ 48 \text { ports @ } 15.4 \text { W } \end{array}\right\|$ | 34 ports @ 30 W 48 ports @ 15.4 W | 45 ports @ 30 W 48 ports @ 15.4 W | 48 ports @ 30 W <br> 48 ports @ 15.4 W |
| X450-G2-48p-10GE4 | $\begin{gathered} 16 \text { ports @ } 30 \text { W } \\ 32 \text { ports @ } 15.4 \text { W } \end{gathered}$ | $\begin{aligned} & 28 \text { ports @ } 30 \text { W } \\ & 48 \text { ports @ } 15.4 \text { W } \end{aligned}$ | 34 ports @ 30 W <br> 48 ports @ 15.4 W | 45 ports @ 30 W 48 ports @ 15.4 W | 48 ports @ 30 W <br> 48 ports @ 15.4 W |

Table 257: CPU, Memory

| CPU/Memory |
| :--- |
| 1GHz 64-bit CPU |
| 1GB DDR3 ECC DRAM |
| 4GB eMMC Flash Memory |
| 4 MB packet buffer per chip |

## Standards and Environmental Data

Table 258: Safety Standards

| North American Safety of ITE | UL 60950-1 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-07 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |

Table 259: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) <br> ICES-003 Class A (Canada) |
| :--- | :--- |
| European EMC standards | EN 55022:2006+A1:2007 Class A |
|  | EN 55024:1998+A1:2001+A2:2003 |
|  | Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2: 2006+A2:2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | ETSI EN 300 386: v1.4.1 (2008-04) (EMC Telecommunications) |
|  | $2004 / 108 / E C$ EMC Directive |

Table 259: EMI/EMC Standards (continued)

| International EMC certifications | CISPR 22: 2008 (Ed 6.0), Class A (International Emissions) |
| :--- | :--- |
|  | EN 55024:1998+A1:2001+A2:2003 Class A (International Immunity) |
|  | IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3:2008 Radiated Immunity 10V/m, Criteria |
|  | IEC/EN 61000-4-4:2004 Transient Burst, 1 kV , Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, $2 \mathrm{kV} \mathrm{L-L}$,2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2008 Conducted Immunity, 0.15-80 MHz, |
|  | 10V/m unmod. RMS, Criteria A |
|  | IEC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, |
|  | 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | BSMI (Taiwan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark (China) |
|  | KCC Mark, EMC Approval (Korea) |

## Table 260: Telecom Standards

```
EN/ETSI 300 386:2008 (EMC Telecommunications)
EN/ETSI 300 019 (Environmental for Telecommunications)
MEF9 and MEF14 certified for EPL, EVPL, and ELAN
```

Table 261: IEEE 802.3 Media Access Standards

```
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3ae 10GBASE-X
IEEE 802.3at PoE Plus
IEEE 802.3az (EEE)
```

Table 262: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 (2003-04) - Class 3.1e Operational EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ <br> Humidity: 10\% to 95\% relative humidity, non-condensing Altitude: 0 to 5,000 meters ( 16,404 feet) - PoE switches Altitude: 0 to 2,000 meters ( 6,562 feet) - non-PoE switches Operational shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), $11 \mathrm{~ms}, 60$ shocks Operational random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, <br> 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. <br> from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches ( $<15 \mathrm{~kg}$ box) |

## Summit X460 Series Switches Technical Specifications

The Summit X460 series includes the following switches:

- Summit X460-24t switch
- Summit X460-48t switch
- Summit X460-24x switch
- Summit X460-48x switch
- Summit X460-24p switch
- Summit X460-48p switch


## Note

For the technical specifications of power supplies for the Summit X460 series switches, see Summit 300 W Power Supplies Technical Specifications on page 525 and Summit 750 W Power Supplies Technical Specifications on page 534.

Table 263: Physical Dimensions

| Summit X460-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X460-48t switch | Width: 17.4 inches $(44.1 \mathrm{~cm})$ |
| Summit X460-24x switch | Depth: 17.0 inches $(43.2 \mathrm{~cm})$ |
| Summit X460-48x switch |  |
| Summit X460-24p switch |  |
| Summit X460-48p switch |  |
| SummitStack module | Height: 1.4 inches $(3.55 \mathrm{~cm})$ |
| SummitStack-V80 module | Width: 3.4 inches $(8.6 \mathrm{~cm})$ |
| XGM3SB-4sf option card | Depth: 4.9 inches $(12.5 \mathrm{~cm})$ |

Table 263: Physical Dimensions (continued)

| XGM3-2sf option card | Height: 1.4 inches $(3.55 \mathrm{~cm})$ |
| :--- | :--- |
| XGM3S-2sf option card | Width: 2.9 inches $(7.4 \mathrm{~cm})$ |
| XGM3S-2xsf option card | Depth: 4.9 inches $(12.5 \mathrm{~cm})$ |
| Summit X460 fan module | Height: 1.6 inches $(4.15 \mathrm{~cm})$ |
|  | Width: 3.25 inches $(8.26 \mathrm{~cm})$ |
|  | Depth: 4.9 inches $(12.53 \mathrm{~cm})$ |

Table 264: Weight

| Summit X460-24t switch | $12.8 \mathrm{lb}(5.81 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X460-48t switch | $13.6 \mathrm{lb}(6.15 \mathrm{~kg})$ |
| Summit X460-24x switch | $13.2 \mathrm{lb}(6.01 \mathrm{~kg})$ |
| Summit X460-48x switch | $14.1 \mathrm{lb}(6.4 \mathrm{~kg})$ |
| Summit X460-24p switch | $13.1 \mathrm{lb}(5.94 \mathrm{~kg})$ |
| Summit X460-48p switch | $13.9 \mathrm{lb}(6.3 \mathrm{~kg})$ |
|  | Note: <br> Switch weights include installed fan module. They do not include installed <br> VIM2 modules or power supplies |
| SummitStack module | $0.42 \mathrm{lb}(0.19 \mathrm{~kg})$ |
| SummitStack-V80 module | $0.53 \mathrm{lb}(0.24 \mathrm{~kg})$ |
| XGM3-2sf module | $0.46 \mathrm{lb}(0.21 \mathrm{~kg})$ |
| XGM3S-2sf option card | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ |
| XGM3S-2xf option card | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ |
| XGM3SB-4sf option card | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ |
| Summit X460 fan module | $0.66 \mathrm{lb}(0.30 \mathrm{~kg})$ |

Table 265: Packaged Dimensions

| Summit X460-24t switch | Height: 6.5 inches $(16.5 \mathrm{~cm})$ |
| :--- | :--- |
| Summit $\times 460-48$ t switch | Width: 23.4 inches $(59.3 \mathrm{~cm})$ |
| Summit $\times 460-24 \times$ switch | Depth: 26.2 inches $(66.5 \mathrm{~cm})$ |
| Summit $\times 460-48 \times$ switch |  |
| Summit $\times 460-24$ p switch |  |
| Summit $\times 460-48$ p switch |  |

Table 266: Packaged Weight

| Summit $\times 460-24 \mathrm{t}$ switch | $23.6 \mathrm{lb}(10.7 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 460-48 \mathrm{t}$ switch | $24.3 \mathrm{lb}(11.0 \mathrm{~kg})$ |
| Summit $\times 460-24 \times$ switch | $24.0 \mathrm{lb}(10.9 \mathrm{~kg})$ |
| Summit $\times 460-48 \times$ switch | $24.9 \mathrm{lb}(11.3 \mathrm{~kg})$ |

Table 266: Packaged Weight (continued)

| Summit X460-24p switch | $23.8 \mathrm{lb}(10.8 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X460-48p switch | $24.6 \mathrm{lb}(11.2 \mathrm{~kg})$ |
| XGM3-2sf module | $0.79 \mathrm{lb}(0.36 \mathrm{~kg})$ |
| XGM3S-2sf option card | $1.0 \mathrm{lb}(0.45 \mathrm{~kg})$ |
| XGM3S-2xf option card | $1.0 \mathrm{lb}(0.45 \mathrm{~kg})$ |
| XGM3SB-4sf option card | $1.0 \mathrm{lb}(0.45 \mathrm{~kg})$ |
| SummitStack module | $0.74 \mathrm{lb}(0.34 \mathrm{~kg})$ |
| SummitStack-V80 module | $0.85 \mathrm{lb}(0.39 \mathrm{~kg})$ |
| Summit X460 fan module | $0.79 \mathrm{lb}(0.36 \mathrm{~kg})$ |

Table 267: Fan

| Minimum speed | 2500 RPM |
| :--- | :--- |
| Maximum speed | 15900 RPM |
| Acoustic sound | 44 dB at low fan speed, 64 dB at high fan speed |

Power: Summit X460-24t

Table 268: Summit X460-24t with No Installed Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1 \mathrm{~A}$ | | | | |
|---|---|---|---|---|---|
| Input current | $0.9 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.45 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |$|$| Minimum power consumption | 83 W |
| :--- | :--- |
| Minimum heat dissipation | $284 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 103 W |
| Maximum heat dissipation | $351 \mathrm{BTU} / \mathrm{hr}$ |

Table 269: Summit X460-24t with No Option Card or Stacking Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 2 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.3 \mathrm{~A} @ 48 \mathrm{~V}==-$ (low-line) |
|  | $1.15 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Minimum power consumption | 67.8 W |
| Minimum heat dissipation | $231 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 85 W |
| Maximum heat dissipation | $290 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X460-24x

Table 270: Summit X460-24x with No Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $0.9 \mathrm{~A} \mathrm{@} \mathrm{100} \mathrm{V~} \mathrm{(low-line)}$ |
|  | $0.45 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Minimum power consumption | 89 W |
| Minimum heat dissipation | $304 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 107 W |
| Maximum heat dissipation | $365 \mathrm{BTU} / \mathrm{hr}$ |

Table 271: Summit X460-24x with No Option Card or Stacking Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}^{---}, 1.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.5 \mathrm{~A} @ 48 \mathrm{~V}=-$ (low-line) |
|  | $1.3 \mathrm{~A} @ 60 \mathrm{~V}=-$ (high-line) |
| Minimum power consumption | 74 W |
| Minimum heat dissipation | $253 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 93 W |
| Maximum heat dissipation | $317 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X460-24p

Table 272: Summit X460-24p with No Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.25 \mathrm{~A}$ (per power supply) |
| :--- | :--- |
| Input current | $4.9 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) (per power supply) |
|  | $2.0 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) (per power supply) |
| Minimum power consumption | 481 W |
|  | 962 W (power supply *2 units) |
| Minimum heat dissipation | $1,640 \mathrm{BTU} / \mathrm{hr}$ (per power supply) |
|  | $3,280 \mathrm{BTU} / \mathrm{hr}$ (power supply * 2 units) |
| Maximum power consumption | 493 W |
|  | 986 W (power supply * 2 units) |
| Maximum heat dissipation | $1,681 \mathrm{BTU} / \mathrm{hr}$ |
|  | $3,362 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X460-48t

Table 273: Summit X460-48t with No Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.25 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.1 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.5 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Minimum power consumption | 105 W |
| Minimum heat dissipation | $359 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 129 W |
| Maximum heat dissipation | $440 \mathrm{BTU} / \mathrm{hr}$ |

Table 274: Summit X460-48t with No Option Card or Stacking Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-2 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.9 \mathrm{~A} @ 48 \mathrm{~V}=-$ (low-line) |
|  | $1.6 \mathrm{~A} @ 60 \mathrm{~V}=-$ (high-line) |
| Minimum power consumption | 107 W |
| Minimum heat dissipation | $365 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 121 W |
| Maximum heat dissipation | $413 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X460-48x

Table 275: Summit X460-48x with No Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 1.25 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.1 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.5 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Minimum power consumption | 101 W |
| Minimum heat dissipation | $345 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 119 W |
| Maximum heat dissipation | $406 \mathrm{BTU} / \mathrm{hr}$ |

Table 276: Summit X460-48x with No Installed Option Card or Stacking Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-, 2.25 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.1 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $1.8 \mathrm{~A} \mathrm{@} \mathrm{60} \mathrm{V=-=}$ (high-line) |
| Minimum power consumption | 107 W |
| Minimum heat dissipation | $365 \mathrm{BTU} / \mathrm{hr}$ |
| Maximum power consumption | 121 W |
| Maximum heat dissipation | $413 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X460-48p

Table 277: Summit X460-48p with No Option Card or Stacking Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 5.5 \mathrm{~A}$ (per power supply) |
| :--- | :--- |
| Input current | $5.0 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $2.1 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Minimum power consumption | 493 W |
|  | 966 W (power supply * 2 units) |
| Minimum heat dissipation | $1,682 \mathrm{BTU} / \mathrm{hr}$ (per power supply) |
|  | $3,364 \mathrm{BTU} / \mathrm{hr}$ (power supply * 2 units) |
| Maximum power consumption | 505 W |
|  | 1010 W (power supply *2 units) |
| Maximum heat dissipation | $1,722 \mathrm{BTU} / \mathrm{hr}$ |
|  | $3,444 \mathrm{BTU} / \mathrm{hr}$ |

Table 278: CPU, Memory

| CPU/Memory |
| :--- |
| 600 MHz CPU |
| 512 MB memory |
| 2.5 MB buffer, per chip |

Table 279: Safety Standards

| North American Safety of ITE | UL 60950-1 2nd Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-03 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
| European Safety of ITE | EN 60950-1:2007 2nd Ed. |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 2006/95/EC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1 2nd Ed. + National Differences |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 280: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:2006+A1:2007 Class A |
|  | EN 55024:A2-2003 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2,8-2006 (Harmonics) |
|  | EN 61000-3-3 2008 (Flicker) |
|  | ETSI EN 300 386 v1.4.1, 2008-04 (EMC Telecommunications) |
|  | 2004/108/EC EMC Directive |
|  | EN 50121-4:2006 (Emission and immunity of the signaling and |
|  | telecommunications apparatus) |
| International EMC certifications | CISPR 22: 2006 Ed 5.2, Class A (International Emissions) |
|  | CISPR 24:A2:2003 Class A (International Immunity) |
|  | IEC 61000-4-2:2008/EN 61000-4-2:2009 |
|  | Electrostatic Discharge, 8kV Contact, 15 kV Air, Criteria A |
|  | IEC 61000-4-3:2008/EN 61000-4-3:2006+A1:2008 |
|  | Radiated Immunity 10V/m, Criteria A |
|  | IEC 61000-4-4:2004 am1 ed.2./EN 61000-4-4:2004/A1:2010 |
|  | Transient Burst, 1 kV, Criteria A |
|  | IEC 61000-4-5:2005 /EN 61000-4-5:2006 |
|  | Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC 61000-4-6:2008/EN 61000-4-6:2009 |
|  | Conducted Immunity, 0.15-80 MHz, 10V/m unmod. RMS, Criteria A |
|  | EC/EN 61000-4-11:2004 |
|  | Power Dips \& Interruptions, >30\%, 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark |
|  | KCC Mark, EMC Approval (Korea) |

Table 281: Telecom Standards
ETSI EN 300 386:2001 (EMC Telecommunications)
ETSI EN 300019 (Environmental for Telecommunications)

Table 282: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 283: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5 G |
| :---: | :---: |
| Operating conditions | Temperature range: <br> Summit X460-24t, X460-48t, X460-24x, and X460-48x $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ <br> Summit X460-24p, X460-48p <br> $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ <br> Humidity: 10\% to 95\% relative humidity, non-condensing <br> Altitude: 0 to 3,000 meters ( 9,850 feet) <br> Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks <br> Random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches (<15 kg box) |

## Summit X460-G2 Series Switches Technical Specifications

The Summit X460-G2 series includes the following switches:

- Summit X460-G2-24t-GE4 switch
- Summit X460-G2-24t-10GE4 switch
- Summit X460-G2-24x-10GE4 switch
- Summit X460-G2-24p-GE4 switch
- Summit X460-G2-24p-10GE4 switch
- Summit X460-G2-48t-GE4 switch
- Summit X460-G2-48t-10GE4 switch
- Summit X460-G2-48x-10GE4 switch
- Summit X460-G2-48p-GE4 switch
- Summit X460-G2-48p-10GE4 switch

Table 284: X460-G2 Unpackaged Dimensions

| X460-G2-24t-GE4 | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| X460-G2-24t-10GE4 | Width: 17.38 inches $(44.1 \mathrm{~cm})$ |
| X460-G2-24x-10GE4 | Length: 16.94 inches $(43.0 \mathrm{~cm})$ |
| X460-G2-48t-GE4 |  |
| X460-G2-48t-10GE4 |  |
| X460-G2-48x-10GE4 | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| X460-G2-24p-GE4 | Width: 17.38 inches $(44.1 \mathrm{~cm})$ |
| X460-G2-24p-10GE4 | Length: 19.11 inches $(48.5 \mathrm{~cm})$ |
| X460-G2-48p-GE4 |  |
| X460-G2-48p-10GE4 |  |

Table 285: X460-G2 Unpackaged Weight (With Blanks; No PSU or Fan Module)

| X460-G2-24t-GE4 <br> X460-G2-24t-10GE4 | $12.92 \mathrm{lb}(5.86 \mathrm{~kg})$ |
| :--- | :--- |
| X460-G2-24x-10GE4 | $13.14 \mathrm{lb}(5.96 \mathrm{~kg})$ |
| X460-G2-24p-GE4 <br> X460-G2-24p-10GE4 | $14.68 \mathrm{lb}(6.66 \mathrm{~kg})$ |
| X460-G2-48t-GE4 <br> X460-G2-48t-10GE4 | $13.27 \mathrm{lb}(6.02 \mathrm{~kg})$ |
| X460-G2-48x-10GE4 | $13.62 \mathrm{lb}(6.18 \mathrm{~kg})$ |
| X460-G2-48p-GE4 <br> X460-G2-48p-10GE4 | $15.21 \mathrm{lb}(6.90 \mathrm{~kg})$ |

Table 286: X460-G2 Packaged Dimensions

| X460-G2-24t-GE4 | Height: 6.70 inches $(17.0 \mathrm{~cm})$ |
| :--- | :--- |
| X460-G2-24t-10GE4 | Width: 21.87 inches $(55.5 \mathrm{~cm})$ |
| X460-G2-24x-10GE4 | Length: 22.85 inches $(58.0 \mathrm{~cm})$ |
| X460-G2-48t-GE4 |  |
| X460-G2-48t-10GE4 |  |
| X460-G2-48x-10GE4 | Height: 6.70 inches $(17.0 \mathrm{~cm})$ |
| X460-G2-24p-GE4 | Width: 22.85 inches $(58.0 \mathrm{~cm})$ |
| X460-G2-24p-10GE4 | Length: 24.03 inches $(61.0 \mathrm{~cm})$ |
| X460-G2-48p-GE4 |  |
| X460-G2-48p-10GE4 |  |

Table 287: X460-G2 Packaged Weight (No PSU or Fan Module)

| X460-G2-24t-GE4 <br> X460-G2-24t-10GE4 | $18.83 \mathrm{lb}(8.56 \mathrm{~kg})$ |
| :--- | :--- |
| X460-G2-24x-10GE4 | $18.70 \mathrm{lb}(8.50 \mathrm{~kg})$ |
| X460-G2-24p-GE4 <br> X460-G2-24p-10GE4 | $21.83 \mathrm{lb}(9.92 \mathrm{~kg})$ |
| X460-G2-48t-GE4 <br> X460-G2-48t-10GE4 | $19.27 \mathrm{lb}(8.76 \mathrm{~kg})$ |

Table 287: X460-G2 Packaged Weight (No PSU or Fan Module) (continued)

| X460-G2-48x-10GE4 | $18.96 \mathrm{lb}(8.62 \mathrm{~kg})$ |
| :--- | :--- |
| X460-G2-48p-GE4 <br> X460-G2-48p-10GE4 | $22.4 \mathrm{lb}(10.2 \mathrm{~kg})$ |

Table 288: VIM and Clock Module Weights and Dimensions

| VIM/Module | Weight | Dimensions |
| :--- | :--- | :--- |
| Summit X460-G2 VIM-2x | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ | Height: 1.4 inches $(3.55 \mathrm{~cm})$ <br> Width: 3.4 inches $(8.6 \mathrm{~cm})$ <br> Length: 5.5 inches $(13.9 \mathrm{~cm})$ |
| Summit X460-G2 VIM-2t | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ | Height: 1.4 inches $(3.55 \mathrm{~cm})$ <br> Width: 3.4 inches $(8.6 \mathrm{~cm})$ <br> Length: 5.5 inches $(13.9 \mathrm{~cm})$ |
| Summit X460-G2 VIM-2ss | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ | Height: 1.4 inches $(3.55 \mathrm{~cm})$ <br> Width: 3.4 inches $(8.6 \mathrm{~cm})$ <br> Length: 5.5 inches $(13.9 \mathrm{~cm})$ |
| Summit X460-G2 VIM-2a | $0.5 \mathrm{lb}(0.23 \mathrm{~kg})$ | Height: 1.4 inches $(3.55 \mathrm{~cm})$ <br> Width: 3.4 inches $(8.6 \mathrm{~cm})$ <br> Length: 5.5 inches $(13.9 \mathrm{~cm})$ |
| Summit X460-G2 TM-CLK | $0.25 \mathrm{lb}(0.12 \mathrm{~kg})$ | Height: 1.4 inches $(3.55 \mathrm{~cm})$ <br> Width: 1.0 inches $(2.54 \mathrm{~cm})$ <br> Length: 6.5 inches $(16.6 \mathrm{~cm})$ |

Table 289: Fan and Acoustic Noise

| Switch Model | Bystander Sound Pressure ${ }^{10}$ | Declared Sound Power $\left(L_{\text {wad }}\right)^{11}$ |
| :---: | :---: | :---: |
| $\begin{array}{\|l} \text { X460-G2-24t-GE4 } \\ \text { X460-G2-24t-10GE4 } \end{array}$ <br> Dual 300 W AC or DC power supply with front-to-back (FB) airflow | $\begin{aligned} & 49.1 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 54.9 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.0 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ <br> 6.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{array}{\|l} \text { X460-G2-24t-GE4 } \\ \text { X460-G2-24t-10GE4 } \end{array}$ <br> Dual 300 W AC or DC power supply with back-to-front (BF) airflow | $\begin{aligned} & 48.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 59.5 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \\ & 65.5 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 5.9 \text { bels, } 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 7.2 \text { bels, } 45^{\circ} \mathrm{C} \\ & 7.8 \text { bels, } 50^{\circ} \mathrm{C} \end{aligned}$ |
| X460-G2-24x-10GE4 <br> Dual 300 W AC or DC power supply with front-to-back (FB) airflow | $\begin{aligned} & 48.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 61.9 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.0 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ 7.5 bels, $50^{\circ} \mathrm{C}$ |
| X460-G2-24x-10GE4 <br> Dual 300 W AC or DC power supply with back-to-front (BF) airflow | $\begin{aligned} & 48.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 58.7 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \\ & 66.7 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.0 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 6.9 bels, $45^{\circ} \mathrm{C}$ <br> 7.8 bels, $50^{\circ} \mathrm{C}$ |

[^8]Table 289: Fan and Acoustic Noise (continued)

| Switch Model | Bystander Sound Pressure ${ }^{10}$ | Declared Sound Power $\left(L_{\text {wAd }}\right)^{11}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \end{aligned}$ <br> Dual 715 W or 1100 W AC power supply with front-toback (FB) airflow | $\begin{aligned} & 52.2 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 61.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ <br> 7.4 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \end{aligned}$ <br> Dual 715 W or 1100 W AC power supply with back-to-front-to-back (BF) airflow | $50.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $69.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 8.1 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X460-G2-48t-GE4 } \\ & \text { X460-G2-48t-10GE4 } \end{aligned}$ <br> Dual 300 W AC or DC power supply with front-to-back (FB) airflow | $\begin{aligned} & 47.6 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 64.5 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 5.9 \text { bels, } 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 7.7 \text { bels, } 50^{\circ} \mathrm{C} \end{aligned}$ |
| $\begin{aligned} & \text { X460-G2-48t-GE4 } \\ & \text { X460-G2-48t-10GE4 } \end{aligned}$ <br> Dual 300 W AC or DC power supply with back-to-front (BF) airflow | $\begin{aligned} & 47.7 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 58.7 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \\ & 65.3 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 5.9 \text { bels, } 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 7.2 \text { bels, } 45^{\circ} \mathrm{C} \\ & 7.8 \text { bels, } 50^{\circ} \mathrm{C} \end{aligned}$ |
| X460-G2-48x-10GE4 <br> Dual 300 W AC or DC power supply with front-to-back (FB) airflow | $\begin{aligned} & 48.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 60.5 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.0 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ 7.4 bels, $50^{\circ} \mathrm{C}$ |
| X460-G2-48x-10GE4 <br> Dual 300 W AC or DC power supply with back-to-front (BF) airflow | $\begin{aligned} & 48.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 57.5 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \\ & 66.1 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.0 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 6.9 bels, $45^{\circ} \mathrm{C}$ <br> 7.8 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ <br> Dual 715 W or 1100 W AC power supply with front-toback (FB) airflow | $\begin{aligned} & 52.2 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 64.3 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.9 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ <br> Dual 715 W or 1100 W AC power supply with back-to-front-to-back (BF) airflow | $50.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$ $64.2 \mathrm{~dB}(\mathrm{~A}), 35^{\circ} \mathrm{C}$ <br> $70.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C}$ | 7.2 bels, $0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$ <br> 7.6 bels, $35^{\circ} \mathrm{C}$ <br> 7.9 bels, $50^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \\ & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ <br> Dual 350 W AC power supply with front-to-back (FB) airflow | $\begin{aligned} & 52.2 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 45^{\circ} \mathrm{C} \\ & 64.3 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 6.9 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ 7.6 bels, $50^{\circ} \mathrm{C}$ |

[^9]Table 289: Fan and Acoustic Noise (continued)

| Switch Model | Bystander Sound Pressure ${ }^{10}$ | Declared Sound Power $\left(L_{\text {WAd }}\right)^{11}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \\ & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ <br> Dual 350 W AC power supply with back-to-front (FB) airflow | $\begin{aligned} & 50.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 31^{\circ} \mathrm{C} \\ & 64.2 \mathrm{~dB}(\mathrm{~A}), 35^{\circ} \mathrm{C} \\ & 70.8 \mathrm{~dB}(\mathrm{~A}), 50^{\circ} \mathrm{C} \end{aligned}$ | 7.2 bels, $0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C}$ <br> 7.6 bels, $35^{\circ} \mathrm{C}$ <br> 7.9 bels, $50^{\circ} \mathrm{C}$ |
| Note: Acoustic noise levels shown here represent noise emitted by the switch at room ambient temperatures. Values are based on a fully configured system consisting of two PSUs and two I/O modules operating under full load. Normal operating temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. |  |  |

Table 290: X460-G2 Fan Speed and Power Consumption

| Fan Speed | Fan Module RPM (typical) | Power |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Inlet Fan | Outlet Fan | Maximum | Typical |
| Full | $14,000( \pm 15 \%)$ | $7,000( \pm 15 \%)$ | 36 W | 30.6 |
| Low | $6,400( \pm 15 \%)$ | $2,900( \pm 15 \%)$ | 3.96 W (typical) |  |

## Power Options

Table 291: Summit X460-G2 Power Supply Options

| Switch Model | Power Supply |
| :--- | :--- |
| X460-G2-24t-GE4 | 300 W AC power supply: |
| X460-G2-24t-10GE4 | Part no. 10930A 300 W AC PS FB (front-to-back) |
| X460-G2-24x-10GE4 | Model EDPS-300AB CA |
| X460-G2-48t-GE4 | Part no. 10943 300 W AC PS BF (back-to-front) |
| X460-G2-48t-10GE4 | Model EDPS-300AB A |
| X460-G2-48x-10GE4 | 100-240 V~,50/60 Hz, 1.25 A max per PS |
| X460-G2-24t-GE4 | 300 W DC power supply: <br> X460-G2-24t-10GE4 <br> X460-G2-24x-10GE4 |
|  | Model PSSW3301201A <br> Part no. 10944 300 W DC PS BF (back-to-front) <br> Model PSSW301202A <br> +24 VDC or -48 VDC, 4.75 A max per PS |

[^10]Table 291: Summit X460-G2 Power Supply Options (continued)

| Switch Model | Power Supply |
| :---: | :---: |
| $\begin{aligned} & \text { X460-G2-48t-GE4 } \\ & \text { X460-G2-48t-10GE4 } \\ & \text { X460-G2-48x-10GE4 } \end{aligned}$ | 300 W DC power supply: <br> Part no. 10933300 W DC PS FB (front-to-back) Model PSSW301201A <br> Part no. 10944300 W DC PS BF (back-to-front) <br> Model PSSW301202A <br> +24 VDC or -48 VDC, 4.75 A max per PS |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \\ & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ | 350 W AC power supply: <br> Part no. 10953350 W AC PS FB (front-to-back) <br> Model PSSF351101A <br> Part no. 10954350 W AC PS BF (back-to-front) <br> Model PSSF351102A <br> 100-240 V~200-240 V~ <br> $50 / 60 \mathrm{~Hz}, 1.25 \mathrm{~A}$ max per PS |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \end{aligned}$ | 715 W AC power supply: <br> Part no. 10951715 W AC PS FB (front-to-back) <br> Model PSSF711101A <br> Part no. 10952715 W AC PS BF (back-to-front) <br> Model PSSF711102A $100-127 \mathrm{~V} \sim 200-240 \mathrm{~V} \sim$ <br> 50/60 Hz, 5.75A/2.75 A max per PS |
| $\begin{aligned} & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ | 715 W AC power supply: <br> Part no. 10951715 W AC PS FB (front-to-back) Model PSSF711101A <br> Part no. 10952715 W AC PS BF (back-to-front) <br> Model PSSF711102A $100-127 \mathrm{~V} \sim 200-240 \mathrm{~V} \sim$ <br> $50 / 60 \mathrm{~Hz}, 7.5 \mathrm{~A} / 3.75 \mathrm{~A}$ max per PS |
| $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \end{aligned}$ | 1100 W AC power supply: <br> Part no. 109411100 W AC PS FB (front to back), Model PSSF112101A Part no. 109421100 W AC PS BF (back to front), Model PSSF112102A 100-127 V~200-240 V~ 50/60 Hz, 10.5A/5.0 A max per PS |
| $\begin{aligned} & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ | 1100 W AC power supply: <br> Part no. 109411100 W AC PS FB (front to back), Model PSSF112101A Part no. 109421100 W AC PS BF (back to front), Model PSSF112102A 100-127 V~200-240 V~ 50/60 Hz, 10.75A/5.0 A max per PS |

Table 292: X460-G2 Power Consumption

| Switch Model | Minimum Heat <br> Dissipation | Minimum Power <br> Consumption | Maximum Heat <br> Dissipation | Maximum Power <br> Consumption |
| :--- | :---: | :---: | :---: | :---: |
| X460-G2-24t-GE4 | $215 \mathrm{BTU} / \mathrm{hr}$ | 63 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 125 W |
| X460-G2-24t-10GE4 | $229 \mathrm{BTU} / \mathrm{hr}$ | 67 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 125 W |
| X460-G2-24x-10GE4 | $209 \mathrm{BTU} / \mathrm{hr}$ | 61 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 125 W |

Table 292: X460-G2 Power Consumption (continued)

| Switch Model | Minimum Heat <br> Dissipation | Minimum Power <br> Consumption | Maximum Heat <br> Dissipation | Maximum Power <br> Consumption |
| :--- | :---: | :---: | :---: | :---: |
| X460-G2-24p-GE4 | $250 \mathrm{BTU} / \mathrm{hr}$ | 73 W | $761 \mathrm{BTU} / \mathrm{hr}$ | 223 W |
| X460-G2-24p-10GE4 | $260 \mathrm{BTU} / \mathrm{hr}$ | 76 W | $761 \mathrm{BTU} / \mathrm{hr}$ | 223 W |
| X460-G2-48t-GE4 | $243 \mathrm{BTU} / \mathrm{hr}$ | 71 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 127 W |
| X460-G2-48t-10GE4 | $250 \mathrm{BTU} / \mathrm{hr}$ | 73 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 125 W |
| X460-G2-48x-10GE4 | $202 \mathrm{BTU} / \mathrm{hr}$ | 59 W | $427 \mathrm{BTU} / \mathrm{hr}$ | 125 W |
| X460-G2-48p-GE4 | $284 \mathrm{BTU} / \mathrm{hr}$ | 83 W | $1116 \mathrm{BTU} / \mathrm{hr}$ | 327 W |
| X460-G2-48p-10GE4 | $287 \mathrm{BTU} / \mathrm{hr}$ | 84 W | $1116 \mathrm{BTU} / \mathrm{hr}$ | 327 W |

Table 293: X460-G2 PoE Power Budget

| PSU Configuration | $\begin{aligned} & \text { X460-G2-24p-GE4 } \\ & \text { X460-G2-24p-10GE4 } \end{aligned}$ | $\begin{aligned} & \text { X460-G2-48p-GE4 } \\ & \text { X460-G2-48p-10GE4 } \end{aligned}$ |
| :---: | :---: | :---: |
| 1 PSU of 715 W | 500 W 16 ports @ 30 W 24 ports @ 15.4 W | 500 W 16 ports @ 30 W 32 ports @ 15.4 W |
| 1 PSU of 1100 W | $\begin{aligned} & 720 \text { W } \\ & 24 \text { ports @ } 30 \text { W } \\ & 24 \text { ports @ } 15.4 \text { W } \end{aligned}$ | 850 W 28 ports @ 30 W 48 ports @ 15.4 W |
| 2 PSUs of 715 W | 720 W <br> 24 ports @ 30 W <br> 24 ports @ 15.4 W | 1031 W <br> 34 ports @ 30 W 48 ports @ 15.4 W |
| 2 PSUs of 1100 W | 720 W <br> 24 ports @ 30 W <br> 24 ports @ 15.4 W | 1440 W 48 ports @ 30 W 48 ports @ 15.4 W |
| 1 PSU of 715 W \& 1 PSU of 1100 W | $\begin{aligned} & 720 \text { W } \\ & 24 \text { ports @ } 30 \text { W } \\ & 24 \text { ports @ } 15.4 \text { W } \end{aligned}$ | 1350 W 45 ports @ 30 W 48 ports @ 15.4 W |

Table 294: CPU, Memory

| CPU/Memory |
| :--- |
| 1GHz 64-bit CPU |
| 1GB DDR3 ECC SDRA |
| 4GB eMMC Flash Memory |
| 4 MB packet buffer per chip |

## Standards and Environmental Data

Table 295: Safety Standards

| North American Safety of ITE | UL 60950-1 2nd Ed., A2:2014 (US) |
| :--- | :--- |
|  | CSA 22.2 No. 60950-1-07 2nd Ed. 2014-10(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |

Table 296: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55032: 2015, Class A |
|  | EN 55024:1998+A1:2001+A2:2003 |
|  | Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2: 2006+A2:2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | ETSI EN 300 386: v1.4.1 (2008-04) (EMC Telecommunications) |
|  | $2014 / 35 /$ EU Low Voltage Directive |
| International EMC certifications | CISPR 32: 2015, Class A (International Emissions) |
|  | EN 55024:1998+A1:2001+A2:2003 Class A (International Immunity) |
|  | IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3:2008 Radiated Immunity 10V/m, Criteria |
|  | IEC/EN 61000-4-4:2004 Transient Burst, 1 kV, Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2008 Conducted Immunity, 0.15-80 MHz, |
|  | $10 V / m$ unmod. RMS, Criteria A |
|  | IEC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, |
|  | 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | BSMI (Taiwan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark (China) |
|  | KCC Mark, EMC Approval (Korea) |

Table 297: Telecom Standards

```
EN/ETSI 300 386:2008 (EMC Telecommunications)
EN/ETSI 300 019 (Environmental for Telecommunications)
MEF9 and MEF14 certified for EPL, EVPL, and ELAN
```

Table 298: IEEE 802.3 Media Access Standards

```
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
EEE 802.3ae 10GBASE-X
IEEE 802.3ba 40GBASE-X
IEEE 802.3at PoE Plus
IEEE 802.3az (EEE)
```

Table 299: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 (2003-04) - Class 3.1e Operational EN/ETSI 300753 (1997-10) - Acoustic Noise ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ <br> Humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Altitude: 0 to 3,000 meters ( 9,850 feet) <br> Operational shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), $11 \mathrm{~ms}, 60$ shocks <br> Operational random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ (18 G), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches ( $<15 \mathrm{~kg} \mathrm{box}$ ) |

## Summit X480 Series Switches Technical Specifications

The Summit X480 series includes the following switches:

- Summit X480-24x switch
- Summit X480-48x switch
- Summit X480-48t switch

Table 300: Physical Dimensions

| Summit X480-24x switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X480-48x switch | Width: 17.4 inches $(44.1 \mathrm{~cm})$ |
| Summit X480-48t switch | Depth: 19.0 inches $(48.3 \mathrm{~cm})$ |
| VIM2-SummitStack module | Height: 1.7 inches $(4.3 \mathrm{~cm})$ |
| VIM2-10G4X module | Width: 5.2 inches $(13.2 \mathrm{~cm})$ |
| VIM2-SummitStack128 module | Depth: 9.9 inches $(25.2 \mathrm{~cm})$ |
| VIM2-SummitStack-V80 module |  |
| VIM3-40G4X module |  |
| Summit X480 fan module | Height: 1.7 inches $(4.3 \mathrm{~cm})$ |
|  | Width: 5.2 inches $(13.2 \mathrm{~cm})$ |
|  | Depth: 9.9 inches $(25.2 \mathrm{~cm})$ |

Table 301: Weight

| Summit X480-24x switch | $20.9 \mathrm{lb}(9.5 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X480-48x switch | $22.7 \mathrm{lb}(10.3 \mathrm{~kg})$ |
| Summit X480-48t switch | $21.2 \mathrm{lb}(9.6 \mathrm{~kg})$ |
| Note: <br> Switch weights include installed <br> fan module. They do not include <br> installed VIM2 modules or power <br> supplies. |  |
| VIM2-SummitStack module | $2.03 \mathrm{lb}(0.92 \mathrm{~kg})$ |
| VIM2-10G4X module | $2.76 \mathrm{lb}(1.25 \mathrm{~kg})$ |
| VIM3-40G4X module | $2.40 \mathrm{lb}(1.09 \mathrm{~kg})$ |
| VIM2-SummitStack128 module | $2.05 \mathrm{lb}(0.93 \mathrm{~kg})$ |
| VIM2-SummitStack-V80 module | $1.48 \mathrm{lb}(0.67 \mathrm{~kg})$ |
| Summit X480 fan module | $0.45 \mathrm{lb}(0.99 \mathrm{~kg})$ |

Table 302: Packaged Dimensions

| Summit X480-24x switch Summit X480-48x switch Summit X480-48t switch | Height: 6.5 inches ( 16.5 cm ) |
| :---: | :---: |
|  | Width: 23.4 inches ( 59.3 cm ) |
|  | Depth: 26.2 inches ( 66.5 cm ) |
| VIM2-SummitStack module <br> VIM2-10G4X module <br> VIM2-SummitStack128 module <br> VIM2-SummitStack-V80 module | Height: 3.9 inches ( 10 cm ) |
|  | Width: 9.4 inches ( 24.0 cm ) |
|  | Depth: 15.4 inches ( 39 cm ) |

Table 303: Packaged Weight

| Summit X480-24x switch | $20.94 \mathrm{lb}(9.5 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X480-48x switch | $22.7 \mathrm{lb}(10.3 \mathrm{~kg})$ |
| Summit X480-48t switch | $21.2 \mathrm{lb}(9.6 \mathrm{~kg})$ |
| VIM2-SummitStack module | $2.0 \mathrm{lb}(0.92 \mathrm{~kg})$ |
| VIM2-10G4X module | $2.75 \mathrm{lb}(1.25 \mathrm{~kg})$ |
| VIM3-40G4X module | $3.46 \mathrm{lb}(1.57 \mathrm{~kg})$ |
| VIM2-SummitStack128 module | $2.1 \mathrm{lb}(0.93 \mathrm{~kg})$ |
| VIM2-SummitStack-V80 module | $2.2 \mathrm{lb}(1 \mathrm{~kg})$ |
| Summit X480 fan module | $1.27 \mathrm{lb}(0.58 \mathrm{~kg})$ |

Table 304: Fan Speed

| Minimum speed | 4500 RPM |
| :--- | :--- |
| Maximum speed | 18000 RPM |

Table 305: Acoustic Noise
60 db at low fan speed, 66 db at high fan speed

Power: Summit X480-24x

Table 306: Summit X480-24x with No Installed VIM (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.0 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.9 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $195 \mathrm{~W}, 663 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $195 \mathrm{~W}, 663 \mathrm{BTU} / \mathrm{hr}$ |

Table 307: Summit X480-24x with VIM2-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.01 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.88 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $200 \mathrm{~W}, 680 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $200 \mathrm{~W}, 680 \mathrm{BTU} / \mathrm{hr}$ |

Table 308: Summit X480-24x with VIM2-10G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.4 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.1 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $241 \mathrm{~W}, 823 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $241 \mathrm{~W}, 823 \mathrm{BTU} / \mathrm{hr}$ |

Table 309: Summit X480-24x with VIM2-SummitStack128 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.08 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.91 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $206 \mathrm{~W}, 704 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $206 \mathrm{~W}, 704 \mathrm{BTU} / \mathrm{hr}$ |

Table 310: Summit X480-24x with VIM2-SummitStack-V80 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.09 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.92 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $207 \mathrm{~W}, 706 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $207 \mathrm{~W}, 706 \mathrm{BTU} / \mathrm{hr}$ |

Table 311: Summit X480-24x with VIM3-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.40 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.95 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $238 \mathrm{~W}, 812 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $238 \mathrm{~W}, 812 \mathrm{BTU} / \mathrm{hr}$ |

Table 312: Summit X480-24x with No Installed VIM (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.25 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.6 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $156 \mathrm{~W}, 532 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $156 \mathrm{~W}, 532 \mathrm{BTU} / \mathrm{hr}$ |

Table 313: Summit X480-24x with VIM2-SummitStack Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.4 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.7 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $161 \mathrm{~W}, 550 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $161 \mathrm{~W}, 550 \mathrm{BTU} / \mathrm{hr}$ |

Table 314: Summit X480-24x with VIM2-10G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.7 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $4.2 \mathrm{~A} \mathrm{@} \mathrm{60} \mathrm{V==} \mathrm{(high-line)}$ |
| Heat dissipation | $246 \mathrm{~W}, 839 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $246 \mathrm{~W}, 839 \mathrm{BTU} / \mathrm{hr}$ |

Table 315: Summit X480-24x with VIM2-SummitStack128 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.5 \mathrm{~A} \mathrm{@} \mathrm{48} \mathrm{V==}$ (low-line) |
|  | $2.8 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $167 \mathrm{~W}, 569 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $167 \mathrm{~W}, 569 \mathrm{BTU} / \mathrm{hr}$ |

Table 316: Summit X480-24x with VIM2-SummitStack-V80 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.6 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $2.9 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $168 \mathrm{~W}, 573 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $169 \mathrm{~W}, 573 \mathrm{BTU} / \mathrm{hr}$ |

Table 317: Summit X480-24x with VIM3-40G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.4 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $4.25 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |

Power: Summit X480-48x

Table 318: Summit X480-48x with No Installed VIM (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.0 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.9 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $200 \mathrm{~W}, 675 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $200 \mathrm{~W}, 675 \mathrm{BTU} / \mathrm{hr}$ |

Table 319: Summit X480-48x with VIM2-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.01 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.89 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $203 \mathrm{~W}, 692 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $203 \mathrm{~W}, 692 \mathrm{BTU} / \mathrm{hr}$ |

Table 320: Summit X480-48x with VIM2-10G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.3 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.0 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $227 \mathrm{~W}, 774 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $227 \mathrm{~W}, 774 \mathrm{BTU} / \mathrm{hr}$ |

Table 321: Summit X480-48x with VIM2-SummitStack128 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.04 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.89 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $202 \mathrm{~W}, 688 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $202 \mathrm{~W}, 688 \mathrm{BTU} / \mathrm{hr}$ |

Table 322: Summit X480-48x with VIM2-SummitStack-V80 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.06 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.91 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $212 \mathrm{~W}, 723 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $212 \mathrm{~W}, 723 \mathrm{BTU} / \mathrm{hr}$ |

Table 323: Summit X480-48x with VIM3-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.6 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.96 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $255 \mathrm{~W}, 870 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $255 \mathrm{~W}, 870 \mathrm{BTU} / \mathrm{hr}$ |

Table 324: Summit X480-48x with No Installed VIM (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.3 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $2.6 \mathrm{~A} @ 60 \mathrm{~V}=-\mathrm{c}$ (high-line) |
| Heat dissipation | $158 \mathrm{~W}, 540 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $158 \mathrm{~W}, 540 \mathrm{BTU} / \mathrm{hr}$ |

Table 325: Summit X480-48x with VIM2-SummitStack Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.4 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.7 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $163 \mathrm{~W}, 556 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $163 \mathrm{~W}, 556 \mathrm{BTU} / \mathrm{hr}$ |

Table 326: Summit X480-48x with VIM2-10G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.7 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $4.4 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $246 \mathrm{~W}, 839 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $246 \mathrm{~W}, 839 \mathrm{BTU} / \mathrm{hr}$ |

Table 327: Summit X480-48x with VIM2-SummitStack128 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.4 \mathrm{~A} \mathrm{@} 48 \mathrm{~V}==$ (low-line) |
|  | $2.7 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $165 \mathrm{~W}, 562 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $165 \mathrm{~W}, 562 \mathrm{BTU} / \mathrm{hr}$ |

Table 328: Summit X480-48x with VIM2-SummitStack-V80 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.5 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.8 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $170 \mathrm{~W}, 580 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $170 \mathrm{~W}, 580 \mathrm{BTU} / \mathrm{hr}$ |

Table 329: Summit X480-48x with VIM3-40G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.42 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $4.3 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $265 \mathrm{~W}, 904 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $265 \mathrm{~W}, 904 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X480-48t

Table 330: Summit X480-48t with No Installed VIM (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.9 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.8 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $182 \mathrm{~W}, 622 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $182 \mathrm{~W}, 622 \mathrm{BTU} / \mathrm{hr}$ |

Table 331: Summit X480-48t with VIM2-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.89 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.84 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $187 \mathrm{~W}, 639 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $187 \mathrm{~W}, 639 \mathrm{BTU} / \mathrm{hr}$ |

Table 332: Summit X480-48t with VIM2-10G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.34 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.0 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $232 \mathrm{~W}, 793 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $232 \mathrm{~W}, 793 \mathrm{BTU} / \mathrm{hr}$ |

Table 333: Summit X480-48t with VIM2-SummitStack128 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.89 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.84 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $256 \mathrm{~W}, 871 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $256 \mathrm{~W}, 871 \mathrm{BTU} / \mathrm{hr}$ |

Table 334: Summit X480-48t with VIM2-SummitStack-V80 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $1.91 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.86 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $194 \mathrm{~W}, 662 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $194 \mathrm{~W}, 662 \mathrm{BTU} / \mathrm{hr}$ |

Table 335: Summit X480-48t with VIM3-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.40 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.98 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $240 \mathrm{~W}, 819 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $240 \mathrm{~W}, 819 \mathrm{BTU} / \mathrm{hr}$ |

Table 336: Summit X480-48t with No Installed VIM (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 7.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.1 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.4 \mathrm{~A} @ 60 \mathrm{~V}=-\mathrm{c}$ (high-line) |
| Heat dissipation | $148 \mathrm{~W}, 503 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $148 \mathrm{~W}, 503 \mathrm{BTU} / \mathrm{hr}$ |

Table 337: Summit X480-48t with VIM2-SummitStack Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.24 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
| $2.5 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |  |

Table 338: Summit X480-48t with VIM2-10G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=7.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.1 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $2.4 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $148 \mathrm{~W}, 503 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $148 \mathrm{~W}, 503 \mathrm{BTU} / \mathrm{hr}$ |

Table 339: Summit X480-48t with VIM2-SummitStack128 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.2 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $2.5 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $153 \mathrm{~W}, 522 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $153 \mathrm{~W}, 522 \mathrm{BTU} / \mathrm{hr}$ |

Table 340: Summit X480-48t with VIM2-SummitStack-V80 Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}=-=, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.3 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $2.6 \mathrm{~A} @ 60 \mathrm{~V}=-\mathrm{c}$ (high-line) |
| Heat dissipation | $160 \mathrm{~W}, 546 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $160 \mathrm{~W}, 546 \mathrm{BTU} / \mathrm{hr}$ |

Table 341: Summit X480-48t with VIM3-40G4X Module (DC Power Supply)

| Nominal input ratings | $48 \mathrm{~V}==, 7.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.1 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $4.0 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $250 \mathrm{~W}, 854 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $250 \mathrm{~W}, 854 \mathrm{BTU} / \mathrm{hr}$ |

Table 342: Safety Standards

| North American Safety of ITE | UL 60950-1 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-03 1st Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
| European Safety of ITE | EN 60950-1:2006 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 2006/95/EC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2006 + National Differences |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 343: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:2006 Class A |
|  | EN 55024:A2-2003 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2,8-2006 (Harmonics) |
|  | EN 61000-3-3 1995+A2:2005 (Flicker) |
|  | ETSI EN 300 386 v1.3.3, 2005-04 (EMC Telecommunications) |
|  | 2004/108/EC EMC Directive |
| International EMC certifications | CISPR 22: 2006 Ed 5.2, Class A (International Emissions) |
|  | CISPR 24:A2:2003 Class A (International Immunity) |
|  | EC/EN 61000-4-2:2001 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | EC/EN 61000-4-3:2006 Radiated Immunity 10V/m, Criteria |
|  | EC/EN 61000-4-4:2005 Transient Burst, 1 kV, Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2005 Conducted Immunity, 0.15-80 MHz, 10V/m unmod. |
|  | RMS, Criteria A |
|  | EC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, 25 periods, |
|  | Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark |
|  | KCC Mark, EMC Approval (Korea) |

Table 344: Telecom Standards

Table 345: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 346: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ Humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches (<15 kg box) |

Note
For the technical specifications of power supplies for the Summit X 480 series switches, see Summit 450 W Power Supplies Technical Specifications on page 528.

## Summit X650 Series Switches Technical Specifications

The Summit X 650 series includes the following switches:

- Summit X650-24t switch
- Summit X650-24X switch

Table 347: Physical Dimensions

| Summit X650-24t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br> Summit X650-24x switch <br>  <br>  <br>  <br> Width: 17.35 inches $(44.1 \mathrm{~cm})$ <br> Depth: 25.8 inches $(65.5 \mathrm{~cm})$ |
| :--- | :--- |
| VIM1-SummitStack module | Height: 1.7 inches $(4.3 \mathrm{~cm})$ <br> VIM1-10G8X module |
| WIM1-SummitStack512 module 5.2 inches $(13.2 \mathrm{~cm})$  <br> VIM1-SummitStack256 module Depth: 9.9 inches $(25.2 \mathrm{~cm})$ <br> VIM3-40G4X module  |  |

Table 348: Weight

| Summit X650-24t switch | $24.1 \mathrm{lb}(11.6 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X650-24x switch | $20.4 \mathrm{lb}(10.1 \mathrm{~kg})$ |
| VIM1-SummitStack module | $1.5 \mathrm{lb}(0.66 \mathrm{~kg})$ |
| VIM1-10G8X module | $2.0 \mathrm{lb}(0.9 \mathrm{~kg})$ |
| VIM3-40G4X module | $2.40 \mathrm{lb}(1.09 \mathrm{~kg})$ |

Table 349: Packaged Dimensions

| Summit X650-24t switch | Height: 10.4 inches $(25.5 \mathrm{~cm})$ |
| :--- | :--- |
| Summit X650-24x switch | Width: 23.3 inches $(59.2 \mathrm{~cm})$ |
|  | Depth: 32.8 inches $(83.4 \mathrm{~cm})$ |

Table 350: Packaged Weight

| Summit X650-24t switch | $35.5 \mathrm{lb}(16.1 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X650-24x switch | $32.2 \mathrm{lb}(14.6 \mathrm{~kg})$ |
| VIM3-40G4X module | $3.46 \mathrm{lb}(1.57 \mathrm{~kg})$ |

Table 351: Fan Speed

| Minimum speed | 4500 RPM |
| :--- | :--- |
| Maximum speed | 18000 RPM |

Table 352: Acoustic Noise
61 db at low fan speed, 66 db at high fan speed

Table 353: Summit X650-24t with VIM1-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.9 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $2.9 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $689 \mathrm{~W}, 2,351 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $689 \mathrm{~W}, 2,351 \mathrm{BTU} / \mathrm{hr}$ |

Table 354: Summit X650-24t with VIM1-10G8X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $7.8 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) |
|  | $3.8 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $780 \mathrm{~W}, 2,661 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $780 \mathrm{~W}, 2,661 \mathrm{BTU} / \mathrm{hr}$ |

Table 355: Summit X650-24t with VIM1-SummitStack512 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $8.0 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $3.8 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $798 \mathrm{~W}, 2,723 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $798 \mathrm{~W}, 2,723 \mathrm{BTU} / \mathrm{hr}$ |

Table 356: Summit X650-24t with VIM1-SummitStack256 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.9 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $4.8 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $285 \mathrm{~W}, 973 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $285 \mathrm{~W}, 973 \mathrm{BTU} / \mathrm{hr}$ |

Table 357: Summit X650-24t with VIM1-SummitStack Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $12.9 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $10.6 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $617 \mathrm{~W}, 2,105 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $617 \mathrm{~W}, 2,105 \mathrm{BTU} / \mathrm{hr}$ |

Table 358: Summit X650-24t with VIM1-10G8X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $14.6 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $12.3 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $701 \mathrm{~W}, 2,393 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $701 \mathrm{~W}, 2,393 \mathrm{BTU} / \mathrm{hr}$ |

Table 359: Summit X650-24t with VIM1-SummitStack512 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $14.8 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $12.5 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $708 \mathrm{~W}, 2,416 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $708 \mathrm{~W}, 2,416 \mathrm{BTU} / \mathrm{hr}$ |

Table 360: Summit X650-24t with VIM1-SummitStack256 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $\mathrm{xxA} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $\mathrm{xxA} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $\mathrm{xxW}, 2,416 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $\mathrm{xxW}, 2,416 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X650-24t (Manufacturing part number 800320-00)

Table 361: Summit X650-24t with VIM1-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $4.6 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.6 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $463 \mathrm{~W}, 1,580 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $463 \mathrm{~W}, 1,580 \mathrm{BTU} / \mathrm{hr}$ |

Table 362: Summit X650-24t with VIM1-10G8X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.5 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) <br> $2.5 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $552 \mathrm{~W}, 1,884 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $552 \mathrm{~W}, 1,884 \mathrm{BTU} / \mathrm{hr}$ |

Table 363: Summit X650-24t with VIM1-SummitStack512 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.7 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
| $2.7 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |  |

Table 364: Summit X650-24t with VIM3-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.2 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) <br> $2.6 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $615 \mathrm{~W}, 2,099 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $615 \mathrm{~W}, 2,099 \mathrm{BTU} / \mathrm{hr}$ |

Table 365: Summit X650-24t with VIM1-SummitStack256 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $x x \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $x x \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |

Table 365: Summit X650-24t with VIM1-SummitStack 256 Module (AC Power Supply) (continued)

| Heat dissipation | $\mathrm{xxW}, \mathrm{xx} \mathrm{BTU} / \mathrm{hr}$ |
| :--- | :--- |
| Power consumption | $\mathrm{xxW}, \mathrm{xx} \mathrm{BTU} / \mathrm{hr}$ |

Table 366: Summit X650-24t with VIM1-SummitStack Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $8.7 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $7.1 \mathrm{~A} @ 60 \mathrm{~V}===$ (high-line) |

Table 367: Summit X650-24t with VIM1-10G8X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $10.4 \mathrm{~A} \mathrm{@} 48 \mathrm{~V}=-=$ (low-line) |
|  | $8.8 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $500 \mathrm{~W}, 1,706 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $500 \mathrm{~W}, 1,706 \mathrm{BTU} / \mathrm{hr}$ |

Table 368: Summit X650-24t with VIM1-SummitStack512 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==, 24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $10.4 \mathrm{~A} \mathrm{@} 48 \mathrm{~V}==$ (low-line) |
|  | $8.8 \mathrm{~A} @ 60 \mathrm{~V}==$ (high-line) |
| Heat dissipation | $501 \mathrm{~W}, 1,709 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $501 \mathrm{~W}, 1,709 \mathrm{BTU} / \mathrm{hr}$ |

Table 369: Summit X650-24t with VIM3-40G4X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $12.7 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $9.95 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $612 \mathrm{~W}, 2088 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $612 \mathrm{~W}, 2088 \mathrm{BTU} / \mathrm{hr}$ |

Table 370: Summit X650-24t with VIM1-SummitStack256 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 24 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $\mathrm{xxA} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $\mathrm{xxA} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $\mathrm{xxW} \mathrm{W}, \mathrm{xx} \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $\mathrm{xxW}, \mathrm{xx} \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X650-24x (all manufacturing part numbers)

Table 371: Summit X650-24x with VIM1-SummitStack Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.9 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.2 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $291 \mathrm{~W}, 992 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $291 \mathrm{~W}, 992 \mathrm{BTU} / \mathrm{hr}$ |

Table 372: Summit X650-24x with VIM1-10G8X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.7 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.5 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $371 \mathrm{~W}, 1,402 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $371 \mathrm{~W}, 1,402 \mathrm{BTU} / \mathrm{hr}$ |

Table 373: Summit X650-24x with VIM1-SummitStack512 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.8 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.6 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $383 \mathrm{~W}, 1,307 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $383 \mathrm{~W}, 1,307 \mathrm{BTU} / \mathrm{hr}$ |

Table 374: Summit X650-24x with VIM1-SummitStack256 Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.9 \mathrm{~A} \mathrm{@} 100 \mathrm{~V} \sim$ (low-line) |
|  | $4.8 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $285 \mathrm{~W}, 973 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $285 \mathrm{~W}, 973 \mathrm{BTU} / \mathrm{hr}$ |

Table 375: Summit X650-24x with VIM3-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.8 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.6 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $385 \mathrm{~W}, 1,314 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $385 \mathrm{~W}, 1,314 \mathrm{BTU} / \mathrm{hr}$ |

Table 376: Summit X650-24x with VIM1-SummitStack Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-9 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.9 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $4.8 \mathrm{~A} \mathrm{@} \mathrm{60} \mathrm{V==} \mathrm{(high-line)}$ |
| Heat dissipation | $287 \mathrm{~W}, 979 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $287 \mathrm{~W}, 979 \mathrm{BTU} / \mathrm{hr}$ |

Table 377: Summit X650-24x with VIM1-10G8X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 9 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $7.5 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $6.1 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $364 \mathrm{~W}, 1,242 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $364 \mathrm{~W}, 1,242 \mathrm{BTU} / \mathrm{hr}$ |

Table 378: Summit X650-24x with VIM1-SummitStack512 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 9 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $7.7 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $6.2 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $372 \mathrm{~W}, 1,269 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $372 \mathrm{~W}, 1,269 \mathrm{BTU} / \mathrm{hr}$ |

Table 379: Summit X650-24x with VIM3-40G4X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}==-, 9 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $7.9 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $6.3 \mathrm{~A} \mathrm{@} \mathrm{60} \mathrm{V==} \mathrm{(high-line)}$ |
| Heat dissipation | $385 \mathrm{~W}, 1,314 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $385 \mathrm{~W}, 1,314 \mathrm{BTU} / \mathrm{hr}$ |

Table 380: Summit X650-24x with VIM1-SummitStack256 Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}===9 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $\mathrm{xxA} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $\mathrm{xxA} @ 60 \mathrm{~V}==$ (high-line) |

Table 381: Safety Standards

| North American Safety of ITE | UL 60950-1:2003 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2\#60950-1-03 1st Ed. (Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |
|  | IEEE 802.3af 6-2003 Environment A for PoE Applications |
| European Safety of ITE | EN 60950-1:2001+A11 |
|  | EN 60825-1+A2:2001 (Lasers Safety) |
|  | TUV-R GS Mark by German Notified Body |
|  | 73/23/EEC Low Voltage Directive |
| International Safety of ITE | CB Report \& Certificate per IEC 60950-1:2001 Country Deviations |
|  | AS/NZX 60950-1 (Australia /New Zealand) |

Table 382: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) <br>  <br>  <br> ICES-003 Class A (Canada) |
| :--- | :--- |
| European EMC standards | EN 55022:1998 Class A |
|  | EN 55024:1998 Class A includes IEC 61000-4-2, 3, 4, 5, 6, 8, 11 |
|  | EN 61000-3-2,3 (Harmonics \& Flicker) |
|  | ETSI EN 300 386:2001 (EMC Telecommunications) |
|  | $89 / 336 / E E C$ EMC Directive |
| International EMC certifications | CISPR 22:1997 Class A (International Emissions) |
|  | CISPR 24:1997 Class A (International Immunity) |
|  | IEC/EN 61000-4-2 Electrostatic Discharge, 8kV Contact, 15kV Air, Criteria A |
|  | IEC/EN 61000-4-3 Radiated Immunity 10V/m, Criteria A |
|  | IEC/EN 61000-4-4 Transient Burst, 1kV, Criteria A |
|  | IEC/EN 61000-4-5 Surge, 2kV L-L, 2kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6 Conducted Immunity, 0.15-80MHz, 10V/m unmod. RMS, |
|  | Criteria A |
|  | IEC/EN 61000-4-11 Power Dips \& Interruptions, >30\%, 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | AS/NZS 3548 ACA (Australia Emissions) |
|  | CNS 13438:1997 Class A (BSMI-Taiwan) |
|  | MIC Mark, EMC Approval (South Korea) |

Table 383: Telecom Standards

Table 384: IEEE 802.3 Media Access Standards
IEEE 802.3ab 1000BASE-T

Table 385: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ Humidity: $10 \%$ to $93 \%$ relative humidity, non-condensing Altitude: 0 to 3,000 meters ( 9,850 feet) Shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G}), 11 \mathrm{~ms}, 60$ shocks Random vibration: 3 to 500 Hz @ 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz @ velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to $500 \mathrm{~Hz} @ 0.2$ G <br> Packaged random vibration: 5 to 20 Hz @ 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides \& corners @ 42 inches ( $<15 \mathrm{~kg}$ box) |

Note
For the technical specifications of power supplies for the Summit X650 series switches, see Summit 850 W Power Supplies Technical Specifications on page 535.

## Summit X670 Series Switches Technical Specifications

The Summit $\times 670$ series includes the following switches:

- Summit X670-48x switch $(17103,17103 C, 17104)$
- Summit X670V-48x switch $(17101,17102)$
- Summit X670V-48t switch (17201, 17202, 17203, 17204, 17205, 17206)

| Note |
| :--- |
| The 17103C Teradyne X670-48x-FB-AC consists of one (17103) X670-48x 48 10GBASE-X SFP+ |
| with three front-to-back airflow fan modules and two (10925) 550W AC Power Supplies with |
| front-to-back airflow. |
| $\quad$Note <br> For the technical specifications of power supplies for the Summit X670 series switches, see <br> Summit 450 W Power Supplies Technical Specifications on page 528 and Summit 550 W <br> Power Supplies Technical Specifications on page 530. |

Table 386: Physical Dimensions

| Summit X670-48x switch <br> Summit X670V-48x switch <br> Summit X670V-48t switch | Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br> Width: 17.4 inches $(44.1 \mathrm{~cm})$ <br> Depth: 19.25 inches $(48.9 \mathrm{~cm})$ <br> VIM4-40G4X module <br>  <br>  <br>  <br>  <br>  <br> Height: 1.6 inches $(4.1 \mathrm{~cm})$ <br> Width: 4.1 inches $(10.3 \mathrm{~cm})$ <br> Depth: 6.5 inches $(16.6 \mathrm{~cm})$ <br> Summit X670 fan module <br>  <br>  <br>  <br>  <br> Height: 1.65 inches $(4.2 \mathrm{~cm})$ <br> Width: 1.65 inches $(4.2 \mathrm{~cm})$ <br> Depth: 3.98 inches $(10.1 \mathrm{~cm})$ |
| :--- | :--- |

Table 387: Weight

| Summit X670-48× switch | $16.0 \mathrm{lb}(7.3 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X670V-48x switch <br> Summit X670V-48t switch | $15.3 \mathrm{lb}(7.0 \mathrm{~kg})$ |
| Note: Switch weights include installed fan module. They do not include installed VIM4 modules or power supplies. |  |
| VIM4-40G4X module | $0.99 \mathrm{lb}(0.45 \mathrm{~kg})$ |
| Summit X670 fan module | $0.36 \mathrm{lb}(0.16 \mathrm{~kg})$ |

Table 388: Packaged Dimensions

| Summit X670-48x switch <br> Summit X670V-48x switch <br> Summit X670V-48t switch | Height: 6.5 inches $(16.5 \mathrm{~cm})$ |
| :--- | :--- |
|  | Width: 23.4 inches $(59.3 \mathrm{~cm})$ |
|  |  |
|  | Weight: 3.9 inches $(10 \mathrm{~cm})$ |
|  | Width: 9.4 inches $(24.0 \mathrm{~cm})$ |

Table 389: Packaged Weight

| Summit X670-48x switch | $22.7 \mathrm{lb}(10.3 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X670V-48x switch <br> Summit X670V-48t switch | $21.2 \mathrm{lb}(9.6 \mathrm{~kg})$ |
| VIM4-40G4X module | $2.75 \mathrm{lb}(1.25 \mathrm{~kg})$ |
| Summit X670 fan module | $1.27 \mathrm{lb}(0.58 \mathrm{~kg})$ |

Table 390: Fan Speed

| Minimum speed | 4500 RPM |
| :--- | :--- |
| Maximum speed | 18000 RPM |

Power: Summit X670-48x

Table 391: Summit X670-48x (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 2.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.25 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.9 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $225 \mathrm{~W}, 768 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $225 \mathrm{~W}, 768 \mathrm{BTU} / \mathrm{hr}$ |

Table 392: Summit X670-48x (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=5.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $4.25 \mathrm{~A} @ 48 \mathrm{~V}==$ (low-line) |
|  | $3.35 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $210 \mathrm{~W}, 717 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $210 \mathrm{~W}, 717 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X670V-48x

Table 393: Summit X670V-48x with No Installed VIM (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.0 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.2 \mathrm{~A} \mathrm{@} \mathrm{240} \mathrm{V~} \mathrm{(high-line)}$ |
| Heat dissipation | $300 \mathrm{~W}, 1,024 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $300 \mathrm{~W}, 1,024 \mathrm{BTU} / \mathrm{hr}$ |

Table 394: Summit X670V-48x with VIM4-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 3.75 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.4 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $1.4 \mathrm{~A} \mathrm{@} 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $340 \mathrm{~W}, 1,161 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $340 \mathrm{~W}, 1,161 \mathrm{BTV} / \mathrm{hr}$ |

Table 395: Summit X670V-48x with No Installed VIM (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}===7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $5.7 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) <br>  <br> $4.6 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $280 \mathrm{~W}, 956 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $280 \mathrm{~W}, 956 \mathrm{BTU} / \mathrm{hr}$ |

Table 396: Summit X670V-48x with VIM4-40G4X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $6.85 \mathrm{~A} @ 48 \mathrm{~V}=-=$ (low-line) |
|  | $5.45 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $330 \mathrm{~W}, 1,126 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $330 \mathrm{~W}, 1,126 \mathrm{BTU} / \mathrm{hr}$ |

Power: Summit X670V-48t

Table 397: Summit X670V-48t with No Installed VIM (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.3 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
| $1.41 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |  |

Table 398: Summit X670V-48t with VIM4-40G4X Module (AC Power Supply)

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 4.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $3.5 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) <br> $1.52 \mathrm{~A} \mathrm{@} 230 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $350 \mathrm{~W}, 1,194 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $350 \mathrm{~W}, 1,194 \mathrm{BTU} / \mathrm{hr}$ |

Table 399: Summit X670V-48t with No Installed VIM (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}===7.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $8.4 \mathrm{~A} @ 40 \mathrm{~V}=-=$ (low-line) |
|  | $5.4 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $336 \mathrm{~W}, 1147 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $336 \mathrm{~W}, 1147 \mathrm{BTU} / \mathrm{hr}$ |

Table 400: Summit X670V-48t with VIM4-40G4X Module (DC Power Supply)

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=, 8.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $9.13 \mathrm{~A} \mathrm{@} 48 \mathrm{~V}=-=$ (low-line) |
|  | $5.88 \mathrm{~A} @ 60 \mathrm{~V}=-=$ (high-line) |
| Heat dissipation | $365 \mathrm{~W}, 1,245 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $365 \mathrm{~W}, 1,245 \mathrm{BTU} / \mathrm{hr}$ |

Table 401: CPU, Memory

| 1 GHz CPU |
| :--- |
| 1 GB memory |
| 9 MB buffer, per chip |

Table 402: Safety Standards

| North American Safety of ITE | UL 60950-1 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-07 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |

Table 403: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:2006+A1:2007 Class A |
|  | EN 55024:1998+A1:2001+A2:2003 |
|  | Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2: 2006+A2:2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | ETSI EN 300 386: v1.4.1 (2008-04) (EMC Telecommunications) |
|  | 2004/108/EC EMC Directive |
| International EMC certifications | CISPR 22: 2008 (Ed 6.0), Class A (International Emissions) |
|  | EN 55024:1998+A1:2001+A2:2003 Class A (International Immunity) |
|  | IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3:2008 Radiated Immunity 10V/m, Criteria |
|  | IEC/EN 61000-4-4:2004 Transient Burst, 1 kV, Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2008 Conducted Immunity, 0.15-80 MHz, |
|  | 1OV/m unmod. RMS, Criteria A |
|  | IEC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, |
|  | 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | BSMI (Taiwan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark (China) |
|  | KCC Mark, EMC Approval (Korea) |

Table 404: Telecom Standards
EN/ETSI 300 386:2008 (EMC Telecommunications)
EN/ETSI 300019 (Environmental for Telecommunications)
MEF9 and MEF14 certified for EPL, EVPL, and ELAN

Table 405: IEEE 802.3 Media Access Standards

```
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3ae 10GBASE-X
IEEE 802.3ba 40GBASE-X
```

Table 406: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage |
| :--- | :--- |
|  | EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3 Transportation |
|  | EN/ETSI 300 019-2-3 v2.1.2 (2003-04)-Class 3.1e Operational |
|  | EN/ETSI 300753 (1997-10) - Acoustic Noise |
|  | ASTM D3580 Random Vibration Unpackaged 1.5 G |

## Summit X670-G2 Series Switches Technical Specifications

The Summit X670-G2 series includes the following switches:

- X670-G2-48x-4q
- X670-G2-72x

Table 407: X670-G2 Unpackaged Dimensions

| X670-G2-48x-4q <br> X670-G2-72x | Height: 1.73 inches $(4.4 \mathrm{~cm})$ <br> Width: 17.38 inches $(44.1 \mathrm{~cm})$ <br> Length: 19.20 inches $(48.7 \mathrm{~cm})$ |
| :--- | :--- |

Table 408: X670-G2 Unpackaged Weight

| X670-G2-48x-4q | $14.7 \mathrm{lb}(6.7 \mathrm{~kg})$ |
| :--- | :--- |
| X670-G2-72x | $15.42 \mathrm{lb}(7.0 \mathrm{~kg})$ |

Table 409: X670-G2 Packaged Dimensions

| X670-G2-48x-4q <br> X670-G2-72x | Height: 13.99 inches $(35.5 \mathrm{~cm})$ <br> Width: 24.23 inches $(61.5 \mathrm{~cm})$ <br> Length: 27.58 inches $(70.0 \mathrm{~cm})$ |
| :--- | :--- |

Table 410: X670-G2 Packaged Weight

| X670-G2-48x-4q | $20.1 \mathrm{lb}(9.1 \mathrm{~kg})$ |
| :--- | :--- |
| X670-G2-72x | $20.7 \mathrm{lb}(9.4 \mathrm{~kg})$ |

Table 411: Fan and Acoustic Noise

| Switch Model | Bystander Sound Pressure ${ }^{12}$ | Declared Sound Power $\left(L_{\text {wAd }}\right)^{13}$ |
| :---: | :---: | :---: |
| X670-G2-48x-4q <br> Dual 550 W AC power supply with front-to-back (FB) airflow | $60.2 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ |
| X670-G2-48x-4q <br> Dual 550 W DC power supply with front-to-back (FB) airflow | $61.3 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ | 7.4 bels, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ |
| X670-G2-48x-4q <br> Dual 550 W AC power supply with back-to-front (BF) airflow | $\begin{aligned} & 58.3 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 70.1 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \end{aligned}$ | 7.0 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 8.4 bels, $45^{\circ} \mathrm{C}$ |
| X670-G2-48x-4q <br> Dual 550 W DC power supply with back-to-front (BF) airflow | $\begin{aligned} & 55.0 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 68.7 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \end{aligned}$ | 6.5 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 8.1 bels, $45^{\circ} \mathrm{C}$ |
| X670-G2-72x <br> Dual 550 W AC power supply with front-to-back (FB) airflow | $\begin{aligned} & 58.9 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 62.5 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \end{aligned}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 7.6 bels, $45^{\circ} \mathrm{C}$ |
| X670-G2-72x <br> Dual 550 W DC power supply with front-to-back (FB) airflow | $58.5 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $62.4 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 7.6 bels, $45^{\circ} \mathrm{C}$ |
| X670-G2-72x <br> Dual 550 W AC power supply with back-to-front (BF) airflow | $\begin{aligned} & 59.8 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \\ & 72.6 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C} \end{aligned}$ | 7.3 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ <br> 8.2 bels, $45^{\circ} \mathrm{C}$ |
| X670-G2-72x <br> Dual 550 W DC power supply with back-to-front (BF) airflow | $56.4 \mathrm{~dB}(\mathrm{~A}), 0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $73.0 \mathrm{~dB}(\mathrm{~A}), 45^{\circ} \mathrm{C}$ | 6.7 bels, $0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ 8.3 bels, $45^{\circ} \mathrm{C}$ |

[^11]
## Power Options

Table 412: Summit X670-G2 Power Options

| X670-G2-48x-4q (part \# 17310) | 550 W AC power supply: <br> Part \# 10925550 W AC PS FB (front-to-back), Model \# DS550HE-3 Part \# 10927550 W AC PS BF (back-to-front), Model \# DS550HE-3-02 $100-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 2.25 \mathrm{~A}$ max per PS |
| :---: | :---: |
|  | 550 W DC power supply: <br> Part \# 10926550 W DC PS FB (front-to-back), Model \# DS550DC-3 <br> Part \# 10928550 W DC PS BF (back-to-front), Model \# DS550DC-3-003 <br> -48 VDC, 5.75 A max per PS |
| X670-G2-72x (part \# 17300) | 550 W AC power supply: <br> Part \# 10925550 W AC PS FB (front-to-back), Model \# DS550HE-3 Part \# 10927550 W AC PS BF (back-to-front), Model \# DS550HE-3-02 $100-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 2.75 \mathrm{~A}$ max per PS |
|  | 550 W DC power supply: <br> Part \# 10926550 W DC PS FB (front-to-back), Model \# DS550DC-3 Part \# 10928550 W DC PS BF (back-to-front), Model \# DS550DC-3-003 <br> -48 VDC, 6.75 A max per PS |

Table 413: Power Consumption

| Switch Model | Minimum Heat <br> Dissipation | Minimum Power <br> Consumption | Maximum Heat <br> Dissipation | Maximum Power <br> Consumption |
| :--- | :--- | :--- | :--- | :--- |
| X670-G2-48x-4q | $325 \mathrm{BTU} / \mathrm{hr}$ | 95 W | $768 \mathrm{BTU} / \mathrm{hr}$ | 225 W |
| X670-G2-72x | $325 \mathrm{BTU} / \mathrm{hr}$ | 95 W | $939 \mathrm{BTU} / \mathrm{hr}$ | 275 W |

Table 414: CPU, Memory

| CPU/Memory |
| :--- |
| 1GHz 64-bit CPU |
| 2GB DDR3 ECC SDRA memory |
| 4GB eMMC Flash Memory |
| 12 MB buffer, per chip |

## Standards and Environmental Data

Table 415: Safety Standards

| North American Safety of ITE | UL 60950-1 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-07 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |

Table 416: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:2006+A1:2007 Class A |
|  | EN 55024:1998+A1:2001+A2:2003 |
|  | Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2: 2006+A2:2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | ETSI EN 300 386: v1.4.1 (2008-04) (EMC Telecommunications) |
|  | 2004/108/EC EMC Directive |
| International EMC certifications | CISPR 22: 2008 (Ed 6.0), Class A (International Emissions) |
|  | EN 55024:1998+A1:2001+A2:2003 Class A (International Immunity) |
|  | IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3:2008 Radiated Immunity 10V/m, Criteria |
|  | IEC/EN 61000-4-4:2004 Transient Burst, 1 kV, Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2008 Conducted Immunity, 0.15-80 MHz, |
|  | 1OV/m unmod. RMS, Criteria A |
|  | IEC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, |
|  | 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | BSMI (Taiwan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark (China) |
|  | KCC Mark, EMC Approval (Korea) |

## Table 417: Telecom Standards

```
EN/ETSI 300 386:2008 (EMC Telecommunications)
EN/ETSI 300 019 (Environmental for Telecommunications)
MEF9 and MEF14 certified for EPL, EVPL, and ELAN
```

Table 418: IEEE 802.3 Media Access Standards

```
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3ae 10GBASE-X
IEEE 802.3ba 40GBASE-X
```

Table 419: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage <br> EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3 Transportation <br> EN/ETSI 300 019-2-3 v2.1.2 (2003-04) - Class 3.1e Operational <br> EN/ETSI 300753 (1997-10) - Acoustic Noise <br> ASTM D3580 Random Vibration Unpackaged 1.5G |
| :---: | :---: |
| Operating conditions | Temperature range: $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ <br> Humidity: 10\% to 95\% relative humidity, non-condensing <br> Altitude: 0 to 3,000 meters ( 9,850 feet) <br> Operational shock (half sine): $30 \mathrm{~m} / \mathrm{s}^{2}$ ( 3 G ), $11 \mathrm{~ms}, 60$ shocks <br> Operational random vibration: 3 to 500 Hz at 1.5 Grms |
| Storage \& transportation conditions (packaged) | Transportation temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ Storage and transportation humidity: $10 \%$ to $95 \%$ relative humidity, non-condensing <br> Packaged shock (half sine): $180 \mathrm{~m} / \mathrm{s}^{2}$ ( 18 G ), $6 \mathrm{~ms}, 600$ shocks Packaged sine vibration: 5 to 62 Hz at velocity $5 \mathrm{~mm} / \mathrm{s}$, 62 to 500 Hz at 0.2 G <br> Packaged random vibration: 5 to 20 Hz at 1.0 ASD w/-3 dB/oct. from 20 to 200 Hz <br> 14 drops minimum on sides and corners at 42 inches ( $<15 \mathrm{~kg}$ box) |

## Summit X770 Series Switches Technical Specifications

The Summit X 770 series includes the following switch:

- Summit X770-32a switch

Table 420: Physical Dimensions


Table 421: Weight

| Summit X770-32a switch ${ }^{14}$ | $18.0 \mathrm{lb}(8.2 \mathrm{~kg})$ |
| :--- | :--- |
| Summit X770 fan module | $0.36 \mathrm{lb}(0.16 \mathrm{~kg})$ |
| 550 W AC PSU | $2.75 \mathrm{lb}(1.2 \mathrm{~kg})$ |
| 550 W DC PSU | $2.50 \mathrm{lb}(1.1 \mathrm{~kg})$ |

[^12]Table 422: Packaged Dimensions

| Summit X770-32q switch | Height: 6.5 inches $(16.5 \mathrm{~cm})$Width: 23.4 inches $(59.3 \mathrm{~cm})$ |
| :--- | :--- |

Table 423: Packaged Weight

| Summit $\times 770-32 \mathrm{a}$ switch | $23.2 \mathrm{lb}(10.5 \mathrm{~kg})$ |
| :--- | :--- |
| Summit $\times 770$ fan module | $0.50 \mathrm{lb}(0.20 \mathrm{~kg})$ |

Table 424: Fan Speed

| Minimum speed | 4500 RPM |
| :--- | :--- |
| Maximum speed | 18000 RPM |

Power: Summit X770-32a

Table 425: Summit X770-32q: Power for Each of the Two Installed AC Power Supplies

| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}, 2.5 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $2.25 \mathrm{~A} @ 100 \mathrm{~V} \sim$ (low-line) |
|  | $0.9 \mathrm{~A} @ 240 \mathrm{~V} \sim$ (high-line) |
| Heat dissipation | $225 \mathrm{~W}, 768 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $225 \mathrm{~W}, 768 \mathrm{BTU} / \mathrm{hr}$ |

Table 426: Summit X770-32q: Power for Each of the Two Installed DC Power Supplies

| Nominal input ratings | 48 to $60 \mathrm{~V}=-=5.0 \mathrm{~A}$ |
| :--- | :--- |
| Input current | $4.25 \mathrm{~A} @ 48 \mathrm{~V}=$ (low-line) |
|  | $3.35 \mathrm{~A} @ 60 \mathrm{~V}=$ (high-line) |
| Heat dissipation | $210 \mathrm{~W}, 717 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption | $210 \mathrm{~W}, 717 \mathrm{BTU} / \mathrm{hr}$ |

## Summit X770 Power Supply Unit (PSU) and Fan Tray Configurations

Table 427: X770-32q PSU and Fan Tray Configurations

| Configuration No. | Quantity PSU | PSU <br> Part No. | Power Supply Description | Quantity Fan Tray | Fan <br> Tray <br> Part <br> No. | Fan Tray Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 10927z | Summit 550 W AC PSU Back to Front airflow (DS550HE-3) | 5 | $17112 z$ | Summit X670 fan module Back to Front airflow (JDD0405612UB3A01) |
| 2 | 1 | $10925 z$ | Summit 550 W AC PSU Front to Back airflow (DS550HE-3) | 5 | 171112 | Summit X670 fan module Front to Back airflow (AS04012UB565300) |
| 3 | 2 | 10927z | Summit 550 W AC PSU Back to Front airflow (DS550HE-3) | 5 | $17112 z$ | Summit X670 fan module Back to Front airflow (JDD0405612UB3A01) |
| 4 | 2 | 10925z | Summit 550 W AC PSU Front to Back airflow (DS550HE-3) | 5 | 171112 | Summit X670 fan module Front to Back airflow (AS04012UB565300) |
| 5 | 1 | $10928 z$ | Summit 550 W DC PSU Back to Front airflow (DS550DC-3-003) | 5 | $17112 z$ | Summit X670 fan module Back to Front airflow (JDD0405612UB3A01) |
| 6 | 1 | $10926 z$ | Summit 550 W DC PSU Front to Back airflow (DS550DC-3) | 5 | $17111 z$ | Summit X670 fan module Front to Back airflow (AS04012UB565300) |
| 7 | 2 | $10928 z$ | Summit 550 W DC PSU Back to Front airflow (DS550DC-3-003) | 5 | $17112 z$ | Summit X670 fan module Back to Front airflow (JDD0405612UB3A01) |
| 8 | 2 | $10926 z$ | Summit 550 W DC PSU Front to Back airflow (DS550DC-3) | 5 | 17111 z | Summit X670 fan module Front to Back airflow (AS04012UB565300) |
| 9 | 1 | 10927z | Summit 550 W AC PSU Back to Front airflow (DS550HE-3) | 5 | $17112 z$ | Summit X670 fan module Back to Front airflow (JDD0405612UB3A01) |
|  | 1 | 10928 z | Summit 550 W DC PSU Back to Front airflow (DS550DC-3-003) |  |  |  |
| 10 | 1 | 10925z | Summit 550 W AC PSU Front to Back airflow (DS550HE-3) | 5 | 17111 z | Summit X670 fan module Front to Back airflow (AS04012UB565300) |
|  | 1 | $10926 z$ | Summit 550 W DC PSU Front to Back airflow (DS550DC-3 |  |  |  |

CPU, Memory

Table 428: CPU, Memory

| 1GHz CPU |
| :--- | :--- |
| 1GB memory |
| 12 MB packet buffer, per chip |

## Standards and Environmental Data

Table 429: Safety Standards

| North American Safety of ITE | UL 60950-1 1st Ed., Listed Device (US) |
| :--- | :--- |
|  | CSA 22.2 \#60950-1-07 2nd Ed.(Canada) |
|  | Complies with FCC 21CFR 1040.10 (US Laser Safety) |
|  | CDRH Letter of Approval (US FDA Approval) |

Table 430: EMI/EMC Standards

| North America EMC for ITE | FCC CFR 47 part 15 Class A (USA) |
| :--- | :--- |
|  | ICES-003 Class A (Canada) |
| European EMC standards | EN 55022:2006+A1:2007 Class A |
|  | EN 55024:1998+A1:2001+A2:2003 |
|  | Class A includes IEC 61000-4-2, 3, 4, 5, 6, 11 |
|  | EN 61000-3-2: 2006+A2:2009 (Harmonics) |
|  | EN 61000-3-3:2008 (Flicker) |
|  | ETSI EN 300 386: v1.4.1 (2008-04) (EMC Telecommunications) |
|  | 2004/108/EC EMC Directive |
| International EMC certifications | CISPR 22: 2008 (Ed 6.0), Class A (International Emissions) |
|  | EN 55024:1998+A1:2001+A2:2003 Class A (International Immunity) |
|  | IEC/EN 61000-4-2:2008 Electrostatic Discharge, 8kV Contact, 15 kV Air, |
|  | Criteria A |
|  | IEC/EN 61000-4-3:2008 Radiated Immunity 10V/m, Criteria |
|  | IEC/EN 61000-4-4:2004 Transient Burst, 1 kV, Criteria A |
|  | IEC/EN 61000-4-5:2005 Surge, 2 kV L-L, 2 kV L-G, Level 3, Criteria A |
|  | IEC/EN 61000-4-6:2008 Conducted Immunity, 0.15-80 MHz, |
|  | $10 V / m$ unmod. RMS, Criteria A |
|  | IEC/EN 61000-4-11:2004 Power Dips \& Interruptions, >30\%, |
|  | 25 periods, Criteria C |
|  | VCCI Class A (Japan Emissions) |
|  | BSMI (Taiwan Emissions) |
|  | ACMA (C-Tick) (Australia Emissions) |
|  | CCC Mark (China) |
|  | KCC Mark, EMC Approval (Korea) |

Table 431: Telecom Standards

```
EN/ETSI 300 386:2008 (EMC Telecommunications)
EN/ETSI 300 019 (Environmental for Telecommunications)
MEF9 and MEF14 certified for EPL, EVPL, and ELAN
```

Table 432: IEEE 802.3 Media Access Standards

```
IEEE 802.3ab 1000BASE-T
IEEE 802.3z 1000BASE-X
IEEE 802.3ae 10GBASE-X
IEEE 802.3ba 40GBASE-X
```

Table 433: Environmental Data

| Environmental standards | EN/ETSI 300 019-2-1 v2.1.2 (2000-2009) - Class 1.2 Storage |
| :--- | :--- |
|  | EN/ETSI 300 019-2-2 v2.1.2 (1999-09) - Class 2.3 Transportation |
|  | EN/ETSI 300 019-2-3 v2.1.2 (2003-04)-Class 3.1e Operational |
|  | EN/ETSI $300753(1997-10)$ - Acoustic Noise |
|  | ASTM D3580 Random Vibration Unpackaged 1.5 G |

## STK-RPS-150PS and RPS Shelves Technical Specifications

The Extreme Networks STK-RPS-150PS is a hot-swappable 150 watt DC power redundant power supply for use with an Extreme Networks stackable or standalone fixed switch model that does not support PoE.

## Caution

The STK-RPS-150PS does not support pliant fixed switch models. Do not connect the power cable from an STK-RPS-150PS to a PoE-compliant fixed switch. Otherwise, damage to the switch may result.

The STK-RPS-150PS can be installed as a standalone unit or with the following rack-mounted shelves:

- STK-RPS-150CH2, a two-slot shelf
- STK-RPS-150CH8, an eight-slot shelf

STK-RPS-15OPS Specifications

Table 434: Physical Specifications

| Dimensions | $7.7 \mathrm{H} \times 2.04 \mathrm{~W} \times 10.1 \mathrm{D}(\mathrm{in})$. |
| :--- | :--- |
|  | $19.6 \mathrm{H} \times 5.2 \mathrm{~W} \times 25.7 \mathrm{D}(\mathrm{cm})$ |
| Unpackaged Weight | $3.85 \mathrm{lb}(1.75 \mathrm{~kg})$ |

Table 435: Power Specifications

| AC input frequency range | 50 to 60 Hz |
| :--- | :--- |
| AC input voltage range | $100-240 \mathrm{VAC}$ |
| Output Voltage | 12 VDC |
| Output Current | 1.0 A min., 8.5 A or 13.0 A max. |

Table 436: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ |
| Operating humidity | $5 \%$ to $95 \%$ (non-condensing) |

STK-RPS-150CH2 Specifications

Table 437: Physical Specifications

| Dimensions without mounting brackets | $5.5 \mathrm{H} \times 44.0 \mathrm{~W} \times 18.0 \mathrm{D}(\mathrm{cm})$ |
| :--- | :--- |
|  | $2.2 \mathrm{H} \times 17.3 \mathrm{~W} \times 7.0 \mathrm{D}$ (in. $)$ |
| Unpackaged Weight | $2.09 \mathrm{lb}(0.95 \mathrm{~kg})$ |

STK-RPS-150CH8 Specifications

Table 438: Physical Specifications

| Dimensions without mounting brackets | $22.26 \mathrm{H} \times 44.0 \mathrm{~W} \times 26.4 \mathrm{D}(\mathrm{cm})$ |
| :--- | :--- |
|  | $8.77 \mathrm{H} \times 17.3 \mathrm{~W} \times 10.4 \mathrm{D}(\mathrm{in})$. |
| Unpackaged Weight | $11.6 \mathrm{lb}(5.27 \mathrm{~kg})$ |

STK-RPS-150PS Connector Pin Locations


Figure 387: STK-RPS-150PS Connector Pin Locations

Table 439: STK-RPS-150PS Connector Pin Functions

| Pin | Function | Pin | Function |
| :--- | :--- | :--- | :--- |
| 1 | -50 V return | 8 | Ground |
| 2 | -50 VDC | 9 | No connection |
| 3 | 12 VDC output | 10 | RPS present |
| 4 | 12 VDC output | 11 | Status 1 |
| 5 | 12 VDC output | 12 | Status 2 |
| 6 | Ground | 13 | Power good |
| 7 |  | 14 | Ground |

## Summit 300 W Power Supplies Technical Specifications

The following Summit 300 W power supplies are available for use:

- Summit 300 W AC power supply Front-to-Back airflow Model 10930A
- Summit 300 W AC power supply Back-to-Front airflow Model 10943
- Summit 300 W DC power supply Front-to-Back airflow Model 10933
- Summit 300 W DC power supply Back-to-Front airflow Model 10944

These power supplies are for use with the Summit X460-G2 series, Summit $X 460-24 t$, Summit X460-24x, Summit X460-48t, and Summit X460-48x switches.

Summit 300 W AC Power Supply (Model 10930A and 10943)

Table 440: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.15 inches $(8.0 \mathrm{~cm})$ <br> Depth: 9.5 Inches $(24.1 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $2.25 \mathrm{lb}(1 \mathrm{~kg})$ |

Table 441: Power Specifications

| Voltage input range | 85 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 5 \mathrm{~A}$ |
| Nominal input current at full loads | 4.2 A @ 90 V~ (low-line) <br> 1.7 A @ 230 V~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 30 A |
| Output | $12 \mathrm{~V}=-\mathrm{F}, 25 \mathrm{~A}$ max, 300 Watts $3.3 \mathrm{~V}=-=3.03 \mathrm{~A}$ max, 10 Watts |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG (1.0 mm²) over 6 feet |
| Efficiency | Low Line: $85 \%$ at $50 \%$ load and $88 \%$ at $100 \%$ load High Line: $86 \%$ at $50 \%$ load and $89 \%$ at $100 \%$ load |

Table 442: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

Summit 300 W DC Power Supply (Model 10933 and 10944)

Table 443: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.15 inches $(8.0 \mathrm{~cm})$ <br> Depth: $9.5 \mathrm{Inches}(24.1 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $1.83 \mathrm{lb}(0.83 \mathrm{~kg})$ |

Table 444: Power Specifications

| Nominal Input | -40 to $-72 \mathrm{~V}, 9 \mathrm{~A}$ |
| :--- | :--- |
| DC Voltage Input Range | 18 V to $-72 \mathrm{~V}==$ |

Table 444: Power Specifications (continued)

| Maximum Input Amperages | $\begin{aligned} & 9 \mathrm{~A} @ 40 \mathrm{~V}=-= \\ & 7.5 \mathrm{~A} @ 48 \mathrm{~V}=- \\ & 5 \mathrm{~A} @ 72 \mathrm{~V}=-= \end{aligned}$ |
| :---: | :---: |
| Inrush Current | 82 A at $72 \mathrm{~V}=-\mathrm{peak}$ |
| Minimum wire size | 14 AWG (1.5 mm²) copper stranded |
| DC Output | $12 \mathrm{~V}=-\mathrm{=}, 25 \mathrm{~A} / 3.3 \mathrm{~V}=-=, 3.0 \mathrm{~A}$ |
| DC Output Power (W) | 300 W |

Table 445: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 350 W Power Supplies Technical Specifications

The following Summit 350 W power supplies are available for use in Summit X460-G2 series PoE switches:

- Summit 350 W AC power supply: front-to-back airflow (part no. 10953)
- Summit 350 W AC power supply: back-to-front airflow (part no. 10954)

Summit 350 W AC Power Supply $(10953,10954)$

Table 446: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.25 inches $(8.3 \mathrm{~cm})$ <br> Length: 10.22 inches $(26.0 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $2.55 \mathrm{lb}(1.12 \mathrm{~kg})$ |

Table 447: Power Specifications

| Voltage input range | $100-127 / 200-240 \sim 47$ to 63 Hz |
| :--- | :--- |
| Nominal input ratings | 12.5 A max at 115 VAC and 6 A max at 230 VAC at Full 350 W load |
| Maximum inrush current | 45 A at Max 264 VAC at 25 C with cold start |
| Output | $54 \mathrm{~V}, 13.2 \mathrm{~A} \mathrm{max}, 350 \mathrm{~W}$ |
| Power supply input socket and cord | IEC/EN 60320-1/C16 AC input receptacles |

Table 447: Power Specifications (continued)

| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| :--- | :--- |
| Efficiency | Minimum efficiency: $88 \%$ at maximum power output. |

Table 448: Environmental Specifications

| Operating temperature | $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $93 \%$ relative humidity, non-condensing at 30 C |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 450 W Power Supplies Technical Specifications

The following two power supplies are available for use in the Summit X480 series switches and in Summit X670 series switches that have front-to-back ventilation airflow.

- Summit 450 W AC power supply
- Summit 450 W DC power supply


## Summit 450 W AC Power Supplies

The following tables list the specifications of the AC power supplies for use with the Summit $\times 480-24 x$, X480-48x, Summit X480-48t, Summit X670-48x, and Summit X670V-48x switches:

Table 449: Physical Specifications

| Dimensions | Height: 1.5 inches $(3.8 \mathrm{~cm})$ <br> Width: 3.1 inches $(7.8 \mathrm{~cm})$ <br> Depth: 13.3 inches $(33.8 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $3.64 \mathrm{lb}(1.65 \mathrm{~kg})$ |

Table 450: Power Specifications

| Voltage input range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 8 \mathrm{~A}$ |
| Nominal input current at full loads | $12 \mathrm{~A} @ 90 \mathrm{~V} \sim$ (low-line) |
|  | $5 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 15 A |
| Output | $12 \mathrm{~V}=-=37 \mathrm{~A} \mathrm{max}, 450$ Watts |
|  | $3.3 \mathrm{~V}=-3$ A max, 9.9 Watts |
|  | Maximum continuous DC output shall not exceed 450 Watts. |
| Power supply input socket | IEC 320 C 14 |

Table 450: Power Specifications (continued)

| Power cord input plug | IEC 320 C13 |
| :--- | :--- |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br>  <br> or <br>  <br> Efficiency$\quad$AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ over 6 feet |

Table 451: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 450 W DC Power Supplies

The following tables list the specifications of the DC power supplies for use with the Summit X480-24x, X480-48x, and Summit X480-48t:

Table 452: Physical Specifications

| Dimensions | Height: 1.5 inches $(3.8 \mathrm{~cm})$ <br> Width: 3.1 inches $(7.8 \mathrm{~cm})$ <br> Depth: 13.3 inches $(33.8 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $3.22 \mathrm{lb}(1.46 \mathrm{~kg})$ |

Table 453: Power Specifications

| Nominal Input | -48 to $-60 \mathrm{~V}==-24 \mathrm{~A}$ |
| :--- | :--- |
| DC Voltage Input Range | -40 to $-75 \mathrm{~V}=-=$ |
| Maximum Input Amperages | $13.5 \mathrm{~A} @ 40 \mathrm{~V}=-=$ |
|  | $11.2 \mathrm{~A} @ 48 \mathrm{~V}=-=$ |
|  | $7.5 \mathrm{~A} @ 72 \mathrm{~V}=-$ |
| Inrush Current | 10 A peak |
| Inrush Energy | $1.5 \mathrm{~A}^{2} \mathrm{~S}$ |
| Minimum wire size | $14 \mathrm{AWG}\left(1.5 \mathrm{~mm}{ }^{2}\right)$ copper stranded |
| DC Output | $12 \mathrm{~V}=-=, 36.7 \mathrm{~A} / 3.3 \mathrm{~V}==-3.0 \mathrm{~A}$ |
| DC Output Power $(\mathrm{W})$ | 450 W |

Table 454: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 550 W Power Supplies Technical Specifications

The following power supplies are available for use in Summit X670, X670-G2, and X770 series switches:

- 550 W AC PSU-FB (Model 10925) - AC power supply with front-to-back ventilation airflow
- 550 W AC PSU-BF (Model 10927)-AC power supply with back-to-front ventilation airflow
- 550 W DC PSU-FB (Model 10926)—DC power supply with front-to-back ventilation airflow
- 550 W DC PSU-BF (Model 10928)—DC power supply with back-to-front ventilation airflow

Table 455: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.07 inches $(7.8 \mathrm{~cm})$ <br> Depth: 13.31 inches $(33.8 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $3.64 \mathrm{lb}(1.65 \mathrm{~kg})$ |

Table 456: AC Power Specifications (Models 10925 and 10927)

| Voltage input range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 8 \mathrm{~A}$ |
| Nominal input current at full loads | 8 A @ 90 V ~ (low-line), 4 A @ 230 V ~ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 15 A at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ |
| Output | $12 \mathrm{~V}=-\mathrm{e}, 45 \mathrm{~A}$ max, 540 Watts, $3 \mathrm{~V}=-, 3 \mathrm{~A}$ max, 10 Watts Maximum continuous DC output shall not exceed 550 Watts. |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | $87 \%$ at $110 \vee \sim$ with full load $88 \%$ at $220 \mathrm{~V} \sim$ with full load |

Table 457: DC Power Specifications (Models 10926 and 10928)

| Nominal Input | -40 V to -60 V, 18 A |
| :---: | :---: |
| DC Voltage Input Range | -36 to -75 V =-- |
| Maximum Input Amperages | $\begin{aligned} & 18 \text { A @ } 36 \mathrm{~V}=-=, 13.5 \mathrm{~A} @ 48 \mathrm{~V}=-= \\ & 8.5 \mathrm{~A} @ 75 \mathrm{~V}=-\mathrm{l} \end{aligned}$ |
| Inrush Current | 25 A peak |
| Inrush Energy | $0.625 \mathrm{~A}^{2} \mathrm{~S}$ |
| Minimum wire size | 14 AWG (1.5 mm²) copper stranded |
| DC Output | $12 \mathrm{~V}=-\mathrm{e}, 45 \mathrm{~A} / 3.3 \mathrm{~V}=-\mathrm{C}, 3.0 \mathrm{~A}$ |
| DC Output Power (W) | 550 W |

Table 458: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operating altitude | Up to 10,000 feet |
| Operational shock |  |
| Frequency Range | 5 to $350 \mathrm{~Hz}, 200$ to $2000 \mathrm{~Hz} \mathrm{PSD:} 0.0001 \mathrm{~g} 2 / \mathrm{Hz}$ <br>  <br> Acceleration to $500 \mathrm{~Hz}-6 \mathrm{~dB} /$ Octave, 500 Hz 0.000052 Hz0.21 .0 gRMS (Typical Level) <br> Duration: 20 min per axis |

## Summit 550 W Power Supplies for X670-G2 Switches

Summit 550 W power supplies are available in the following models:

- 550 W AC PSU-FB (Model DS550HE-3 ) - AC power supply with front-to-back ventilation airflow
- 550 W DC PSU-FB (Model DS550DC-3)—DC power supply with front-to-back ventilation airflow
- 550 W AC PSU-BF (Model DS550HE-3-002)-AC power supply with back-to-front ventilation airflow
- 550 W DC PSU-BF (Model DS550DC-3-003)—DC power supply with back-to-front ventilation airflow


## Specifications for 550 W Power Supplies for the X670-G2

The following tables list the specifications for the 550 W AC PSU-FB (Model 10925) and 550 W AC PSUBF (Model 10927) AC power supplies for use in X670 and X770 series switches.

Table 459: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.07 inches $(7.8 \mathrm{~cm})$ <br> Depth: 13.31 inches $(33.8 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | AC model $3.64 \mathrm{lb}(1.65 \mathrm{~kg})$ DC model $2.58 \mathrm{lb}(1 / 17 \mathrm{~kg})$ |

Table 460: DC Model Power Specifications

| Nominal input | -48 to $-60 \mathrm{VDC}, 24 \mathrm{~A}$ |
| :--- | :--- |
| DC Voltage input range | -35 to -75 V |
| Inrush Current | 21 A peak |
| Maximum wire size | $14 \mathrm{AWG}(1.5 \mathrm{~mm} 2$ copper stranded $)$. |
| DC Output | $12 \mathrm{~V}, 45 \mathrm{~A} / 3.3 \mathrm{~V}, 3 \mathrm{~A}$ |
| DC Output Power $(\mathrm{W})$ | 550 W |

Table 461: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operating altitude | Up to 10,000 feet |
| Operational shock |  |
| Frequency Range | 5 to $350 \mathrm{~Hz}, 200$ to $2000 \mathrm{~Hz} \mathrm{PSD:} 0.0001 \mathrm{~g} 2 / \mathrm{Hz}$ <br>  <br> Acceleration0.21.0 gRMS (Typical Level) $500 ~ H z ~-6 \mathrm{~dB} /$ Octave, 500 Hz 0.000052 Hz <br>  |

## Summit DC Power Supplies for X670 and X770 Series Switches

The following tables list the specifications for the 550 W DC PSU-FB (Model 10926) and 550 W DC PSU-BF (Model 10928) power supplies for use with the Summit X670 and Summit X770 series switches.

| Dimensions | Height: 1.5 inches $(3.8 \mathrm{~cm})$ <br> Width: 3.1 inches $(7.8 \mathrm{~cm})$ <br> Depth: 13.3 inches $(33.8 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $3.22 \mathrm{lb}(1.46 \mathrm{~kg})$ |

Table 462: Power Specifications

| Nominal Input | -40 V to $-60 \mathrm{~V}, 18 \mathrm{~A}$ |
| :--- | :--- |
| DC Voltage Input Range | -36 to $-75 \mathrm{~V}==$ |
| Maximum Input Amperages | $18 \mathrm{~A} @ 36 \mathrm{~V}=-=13.5 \mathrm{~A} @ 48 \mathrm{~V}=-=$ |
|  | $8.5 \mathrm{~A} @ 75 \mathrm{~V}=-=$ |

Table 462: Power Specifications (continued)

| Inrush Current | 25 A peak |
| :--- | :--- |
| Inrush Energy | $0.625 \mathrm{~A}^{2} \mathrm{~S}$ |
| Minimum wire size | $14 \mathrm{AWG}\left(1.5 \mathrm{~mm}^{2}\right)$ copper stranded |
| DC Output | $12 \mathrm{~V}=-=, 45 \mathrm{~A} / 3.3 \mathrm{~V}=-=, 3.0 \mathrm{~A}$ |
| DC Output Power $(\mathrm{W})$ | 550 W |

Table 463: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operating altitude | Up to 10,000 feet |
| Operational shock |  |
| Frequency Range | 5 to $350 \mathrm{~Hz}, 200$ to $2000 \mathrm{~Hz} \mathrm{PSD:} 0.0001 \mathrm{~g} 2 / \mathrm{Hz}$ |
|  | 350 to $500 \mathrm{~Hz}-6 \mathrm{~dB} /$ Octave, 500 Hz 0.000052 Hz |
| Acceleration | 0.21 .0 gRMS (Typical Level) <br>  |

## Summit 715 W Power Supplies Technical Specifications

The following Summit 715 W power supplies are available for use in Summit X460-G2 series switches.

- Summit 715 W AC power supply: front-to-back airflow (part no. 10951)
- Summit 715 W AC power supply: back-to-front airflow (part no. 10952)

Model 10951 (front-to-back airflow) is also compatible with the Summit X450-G2 PoE switch models.

Table 464: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.25 inches $(8.3 \mathrm{~cm})$ <br> Length: 10.22 inches $(26.0 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $2.55 \mathrm{lb}(1.12 \mathrm{~kg})$ |

Table 465: Power Specifications

| Voltage input range | $100-127 / 200-240 \sim 47$ to 63 Hz |
| :--- | :--- |
| Nominal input ratings | 12.5 A max at 115 VAC and 6 A max at 230VAC at Full 715 W load |
| Maximum inrush current | 45 A at Max 264 VAC at 25 C with cold start |
| Output | $54 \mathrm{~V}, 13.2 \mathrm{~A}$ max, 715 W |
| Power supply input socket and cord | IEC/EN 60320-1/C16 AC input receptacles |

Table 465: Power Specifications (continued)

| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| :--- | :--- |
| Efficiency | Minimum efficiency: $88 \%$ at maximum power output. |

Table 466: Environmental Specifications

| Operating temperature | $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $93 \%$ relative humidity, non-condensing at 30 C |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 750 W Power Supplies Technical Specifications

The Summit 750 W AC power supply (part no. 10931) is available for use with Summit X460 series PoE. switches. It is compatible with the EPS-C2 power supply.

The Summit 750 W AC power supply is also used in the EPS-C2 external power system.

Table 467: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.15 inches $(8.0 \mathrm{~cm})$ <br> Depth: 9.5 inches $(24.1 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $2.25 \mathrm{lb}(1 \mathrm{~kg})$ |

Table 468: Power Specifications

| Voltage input range | 85 to 264 V |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 10 \mathrm{~A}$ |
| Nominal input current at full loads | 10 A at $90 \mathrm{~V} \sim$ (low-line) <br> 3.7 A at $230 \mathrm{~V} \sim$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 35 A |
| Output | $12 \mathrm{~V}=-=25$ A max, 300 Watts <br> $55 \mathrm{~V}=-\mathrm{-}, 8.18$ A max, 450 Watts <br> 3.3 V $=-=$, 3.03 A max, 10 Watts |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |

Table 468: Power Specifications (continued)

| Power supply cord gauge | 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br> or <br> 16 AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ over 6 feet <br> EfficiencyLow Line: $88 \%$ at $50 \%$ load and $86 \%$ at $100 \%$ load <br> High Line: $90 \%$ at $50 \%$ and $100 \%$ loads |
| :--- | :--- |

Table 469: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $20 \%$ to $90 \%$ relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 850 W Power Supplies Technical Specifications

The Summit X650 power supplies can be used in the Summit X650-24t switch and the Summit X650-24x switch.

Two Summit X650 power supplies are available:

- Summit X650 AC power supply
- Summit X650 DC power supply

For use with the Summit X650-24t and X650-24x switches

| Weight | $3.04 \mathrm{lb}(1.38 \mathrm{~kg})$ |
| :--- | :--- |
| Voltage input range | 90 to $264 \mathrm{~V} \sim$ |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50 \mathrm{to} 60 \mathrm{~Hz}, 10 \mathrm{~A}$ |
| Nominal input current at full loads | $12 \mathrm{~A} @ 90 \mathrm{~V} \sim$ (low-line) |
|  | $5 \mathrm{~A} @ 230 \mathrm{~V} \sim$ (high-line) $)$ |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 100 A |
| Output | $12 \mathrm{~V}=-=, 70 \mathrm{~A}$ max, 840 Watts |
|  | $3.3 \mathrm{~V}=-, 6 \mathrm{~A}$ max, 19.8 Watts |
|  | Maximum continuous DC output shall not exceed 850 Watts. |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power cord input plug | IEC 320 Cl 3 |
| Power cord wall plug |  |


| Power supply cord gauge | 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ up to 6 feet or 2 meters <br> or <br> 16 AWG $\left(1.0 \mathrm{~mm}^{2}\right)$ over 6 feet |
| :--- | :--- |
| Efficiency | $80 \%$ with $60 \%$ to $100 \%$ load |

For use with the Summit X650-24t and X650-24x switches

Table 470: Summit 850 W DC Power Supply (Model 10915)

| Weight | $2.95 \mathrm{lb}(1.34 \mathrm{~kg})$ |
| :---: | :---: |
| Nominal Input | -48 to -60 V $==$ |
| DC Voltage Input Range | -39 to $-72 \mathrm{~V}=-$ |
| Maximum Input Amperages | $\begin{aligned} & 26 \mathrm{~A} @ 40 \mathrm{~V}=- \\ & 22 \mathrm{~A} @ 48 \mathrm{~V}=- \\ & 15 \mathrm{~A} @ 72 \mathrm{~V}=- \end{aligned}$ |
| Minimum wire size | 12 AWG ( $3.3 \mathrm{~mm}^{2}$ ) copper stranded |
| DC Output | $12 \mathrm{~V}=-70 \mathrm{~A} / 3.3 \mathrm{~V}=-\mathrm{l}, 6 \mathrm{~A}$ |
| DC Output Power (W) | 850 W |
| Operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (normal operation) <br> Short-term operation is permitted at $-5^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, for no more than 96 consecutive hours and a total of not more than 15 days in 1 year. |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Operating humidity | 20\% to 95\% relative humidity, non-condensing |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit 1100 W Power Supplies Technical Specifications

## AC Power Supplies

The following Summit 1100 W AC power supplies are available for use in Summit X460-G2 series switches.

- Summit 1100 W AC power supply: front-to-back airflow (part no. 10941)
- Summit 1100 W AC power supply: back-to-front airflow (part no. 10942)

Model 10941 (front-to-back airflow) is also compatible with the Summit X450-G2 PoE switch models

See Summit 1100 W AC Power Supplies $(10941,10942)$ on page 537 for details.

## Summit 1100 W AC Power Supplies $(10941,10942)$

Table 471: Physical Specifications

| Dimensions | Height: 1.57 inches $(4.0 \mathrm{~cm})$ <br> Width: 3.25 inches $(8.3 \mathrm{~cm})$ <br> Length: 10.22 inches $(26.0 \mathrm{~cm})$ |
| :--- | :--- |
| Weight | $2.55 \mathrm{lb}(1.12 \mathrm{~kg})$ |

Table 472: Power Specifications

| Voltage input range | $100-127 / 200-240 \sim 47$ to 63 Hz |
| :--- | :--- |
| Nominal input ratings | 12.5 A max at 115 VAC and 6 A max at 230 VAC at full 1100 W load |
| Maximum inrush current | 45 A at Max 264 VAC at 25 C with cold start |
| Output | $54 \mathrm{~V}, 20$ A max, 1100 W |
| Power supply input socket and cord | IEC/EN 60320-1/C16 AC input receptacles |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC <br> Power Supplies on page 543. |
| Efficiency | Minimum efficiency: $88 \%$ at maximum power output. |

Table 473: Environmental Specifications

| Operating temperature | $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Operating humidity | $93 \%$ relative humidity, non-condensing at 30 C |
| Operational shock | $30 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{G})$ |

## Summit External Power Supplies Technical Specifications

The following external power supplies are available for use with Summit X150, X250e, X450, X450a, and X450e series switches:

- EPS-LD external power supply
- EPS-160 external power module (used with EPS-T chassis)
- EPS-500 external power supply
- EPS-600LS external power module (used with EPS-C chassis)
- EPS-150DC external power supply (used with EPS-T2 chassis)

For use with the Summit X450a-24t and X450e-24p switches

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :--- | :--- |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 10 \mathrm{~A}$ |
| Input Current | 6 A at $100 \mathrm{~V} \sim, 2.5 \mathrm{~A}$ at $240 \mathrm{~V} \sim$ |
| Line frequency range | 47 to 63 Hz |


| Maximum inrush current | 30 A at $115 \mathrm{~V} \sim, 60 \mathrm{~A}$ at $230 \mathrm{~V} \sim$ |
| :---: | :---: |
| Output | $-50 \mathrm{~V}=-=, 7.5$ A max, 375 Watts <br> $12 \mathrm{~V}=-, 7.5 \mathrm{~A}$ max, 90 Watts |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power cord input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or 16 AWG (1.0 mm²) over 6 feet |
| Efficiency | >75\% at 100\% load |
| Heat dissipation, Watts, BTU/hr | 123 W, 419.7 BTU/hr |
| Power consumption, Watts, BTU/hr | 588 W, 2006.3 BTU/hr |
| Ambient operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ |

For use with the Summit X150-24t, X150-48t, X250e-24t, X250e-24x, X250e-48t, X450-24t, and X450-24x switches

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100 to $250 \mathrm{~V}, 4$ to $2 \mathrm{~A}, 47$ to 63 Hz |
| Line frequency range | 47 to 63 Hz |
| Input current | $\begin{aligned} & 2 \mathrm{~A} \text { at } 100 \mathrm{~V} \\ & 1 \mathrm{~A} \text { at } 240 \mathrm{~V} \end{aligned}$ |
| Line frequency | 50 to 60 Hz |
| Maximum inrush current | 30 A at $115 \mathrm{~V} \sim 50 \mathrm{~A}$ at $230 \mathrm{~V} \sim$ |
| Output | $\begin{aligned} & 12 \mathrm{~V}=-=, 11 \mathrm{~A} \\ & 5 \mathrm{~V}=-=, 1.5 \mathrm{~A} \end{aligned}$ |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C 14 |
| Power supply input plug | IEC $320 \mathrm{Cl3}$ |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 80\% at 100\% load |
| Heat dissipation, Watts/BTU | 38.5 W, 131.4 BTU/hr |
| Power consumption, Watts, BTU/hr | 178 W, 607.4 BTU/hr |
| Ambient operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ |

The following figure shows the wire-to-pin connections for the connector on the rear panel of the EPS-160 power supply.

Table 474: Pinouts for the Redundant Power Supply Connector

| Connector | Pin Number | Wire Label | Pin Number | Wire Label |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | NC | 8 | RS+ |
|  | 2 | GND | 9 | GND |
|  | 3 | GND | 10 | INT PG |
|  | 4 | GND | 11 | EXT_CON |
|  | 5 | GND | 12 | EXT_PG |
|  | 6 | +12 V | 13 | +5V |
|  | 7 | +12 V | 14 | +12 V |

For use with the Summit X150-24p, X250e-24p, X450a-24t, X450a-24x, X450a-48t, and X450e-24p switches

| Operational voltage range | 90 to $264 \mathrm{~V} \sim$ |
| :---: | :---: |
| Nominal input ratings | 100 to $240 \mathrm{~V} \sim, 50$ to $60 \mathrm{~Hz}, 10 \mathrm{~A}$ |
| Nominal input current | $\begin{aligned} & 5.75 \text { A @ } 115 \text { V~ (low-line) } \\ & \text { 2.80 A @ } 230 \text { V~ (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | 30 A@115 V, 60 A @ 220 V~ |
| Output | $-50 \mathrm{~V}=-\mathrm{F}, 7.5 \mathrm{~A}$ max, 375 Watts <br> $12 \mathrm{~V}=-=, 10.5$ A max, 126 Watts <br> Maximum continuous DC output shall not exceed 500 Watts. |
| Power supply cord type | AC |
| Power supply input socket | IEC $320 \mathrm{Cl4}$ |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | >70\% @ 100\% load |
| Heat dissipation, Watts, BTU/hr | 158 W, 539.1 BTU/hr |
| Power consumption, Watts, BTU/hr | 659 W, 2248.6 BTU/hr |
| Ambient operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ |

For use with the Summit $\times 450 e-48 p$ and $\mathrm{X} 250 \mathrm{e}-48 \mathrm{p}$ switches
Must be installed in the EPS-C chassis (Model 10912)

| Operational voltage range | 90 to 264 V ~ |
| :---: | :---: |
| Nominal input ratings | 100-250 V $\sim, 50 / 60 \mathrm{~Hz}, 10 \mathrm{~A}$ |
| Nominal input current | $\begin{aligned} & 7 \text { A @ } 115 \text { V~ (low-line) } \\ & 3.5 \text { A @ } 230 \text { V (high-line) } \end{aligned}$ |
| Line frequency range | 47 to 63 Hz |
| Maximum inrush current | $17 \mathrm{~A} @ 115 \mathrm{~V} / 60 \mathrm{~Hz}$, maximum load |
| Output power | 600 W |
| Power supply cord type | AC |
| Power supply input socket | IEC 320 C14 |
| Power cord input plug | IEC 320 C13 |
| Power cord wall plug | Refer to Power Cord Requirements for AC-Powered Switches and AC Power Supplies on page 543. |
| Power supply cord gauge | 18 AWG ( $0.75 \mathrm{~mm}^{2}$ ) up to 6 feet or 2 meters or <br> 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ) over 6 feet |
| Efficiency | 85\% nominal |
| Heat dissipation, Watts, BTU/hr | 219 W, 747.3 BTU/hr |
| Power consumption, Watts, BTU/hr | 801 W, 2733.1 BTU/hr |
| Ambient operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ |
| Output Ratings for EPS-C chassis with 1, 2, or 3 installed EPS-600LS units |  |
| One EPS-600-LS unit | 582 W output: -48 V/9 A (432 W), $12 \mathrm{~V} / 12.5 \mathrm{~A}$ |
| Two EPS-600-LS units | 1116 W output: $-48 \mathrm{~V} / 18 \mathrm{~A}(864 \mathrm{~W}), 12 \mathrm{~V} / 21 \mathrm{~A}$ |
| Three EPS-600-LS units | 1260 W output: $-48 \mathrm{~V} / 21 \mathrm{~A}(1008 \mathrm{~W}), 12 \mathrm{~V} / 21 \mathrm{~A}$ |

For use with the Summit X450a-24tDC and Summit X450a-24xDC switches

| Operational voltage range | -36 to $-72 \mathrm{~V}=-=$ |
| :--- | :--- |
| Nominal input ratings | -36 to $-72 \mathrm{~V}=-=, 6$ A maximum |
| Input current | $5.5 \mathrm{~A} @-36 \mathrm{~V}=-=$ (low-line) |
|  | $2.6 \mathrm{~A} @-72 \mathrm{~V}=-=$ (high-line) |
| Line frequency range | 47 to 63 Hz |
| Inrush current | $20 \mathrm{~A} @ 48 \mathrm{~V}, 40 \mathrm{~A} @ 72 \mathrm{~V}=-$ |
| Input wire harness | Extreme part number 250088-00 |
| Power supply input socket | TYCO PN 206061-1 |
| Power cord input plug | TYCO PN 206060-1 |


| Power cord wall plug | None provided |
| :--- | :--- |
| Power supply cord gauge | $14 \mathrm{AWG}\left(2.0 \mathrm{~mm}^{2}\right)$ |
| Input wire harness | Extreme part number250088-00 |
| Efficiency | $>75 \%$ at $100 \%$ load |
| Heat dissipation, Watts, BTU/hr | $45 \mathrm{~W}, 153.5 \mathrm{BTU} / \mathrm{hr}$ |
| Power consumption, Watts, BTU/hr | $195 \mathrm{~W}, 665.4 \mathrm{BTU} / \mathrm{hr}$ |
| Ambient operating temperature | $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ |
| Storage and transportation temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |

The following figure provides the wire-to-pin connection specifications for the DC wiring harness shipped with the EPS-150DC power supply. Figure 288 on page 320 shows the connector.

Table 475: Wire-to-Pin Connection Specifications

| Pin Number | Wire Color | Circuit Connection |
| :--- | :--- | :--- |
| 1 | Green/yellow | Chassis ground |
| 2 | Red | Return |
| 3 | Black | -48 V |
| 4 | unused |  |



Figure 388: Three-wire Wiring Harness

## EPS-C2 Redundant Power Supply Technical Specifications

The following tables list the specifications for the EPS-C2 redundant power supply unit (model 10936).

Table 476: Physical Specifications

| Dimensions | $4.4 \mathrm{H} \times 44.1 \mathrm{~W} \times 38.4 \mathrm{D}(\mathrm{cm}) 17.4 \mathrm{H} \times 15.1 \mathrm{~W} \times 13.4 \mathrm{D}$ (in.) |
| :--- | :--- |
| Weight (unit only) | $1.03 \mathrm{~kg}(2.27 \mathrm{lb})$ |

Table 477: Other Specifications

| Allowable PSU | Summit 750W PoE AC PSU |
| :--- | :--- |
| Power cord input plug/socket | IEC 320 C13/C14 |
| Power cord gauge | Min 18AWG |

## RPS-500p Redundant Power Supply Technical Specifications

## External Power Supplies for PoE Switches

The following tables list the specifications for the 500 W DC RPS-500p (model 10923).

Table 478: Physical Specifications

| Dimensions | $4.45 \mathrm{H} \times 44.5 \mathrm{~W} \times 16.5 \mathrm{D}(\mathrm{cm}) 1.75 \mathrm{H} \times 17.5 \mathrm{~W} \times 6.5 \mathrm{D}$ (in) |
| :--- | :--- |
| Weigh (unit only) | $3.47 \mathrm{~kg}(7.63 \mathrm{lb})$ |
| Weigh (unit and packaging) | $4.95 \mathrm{~kg}(10.89 \mathrm{lb})$ |

Table 479: Power Specifications

| AC input frequency | $50 / 60 \mathrm{~Hz}($ range $47-63 \mathrm{~Hz})$ |
| :--- | :--- |
| AC input voltage | $100-240 \mathrm{~V} \sim($ range $90-264 \mathrm{~V} \sim)$ |
| AC input current | 8 A maximum |
| DC output | $-54 \mathrm{~V}^{---}, 7.8 \mathrm{~A}$ maximum |
|  | $+12.0 \mathrm{~V}=-14 \mathrm{~A}$ maximum |
| Maximum DC output power | 500 W |

Table 480: Environmental Specifications

| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (normal operation) $\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ |
| :--- | :--- |
| Storage temperature | $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Operating humidity | $5 \%$ to $95 \%$ relative humidity, non-condensing |

## RPS-500p Connector

See Figure 389 and Table 481 on page 543 for pin locations and function.
Note
The following information is for troubleshooting purposes only. For proper operation, use only
the 1 meter RPS cable supplied with the RPS-500p. This cable is specially designed for this
application and meets all necessary regulatory and safety standards. The use of non-
approved cables will void your warranty.


Figure 389: RPS-500p Connector Pin Locations

Table 481: RPS-500p Connector Pins

| Pin | Function | Pin | Function |
| :--- | :--- | :--- | :--- |
| 1 | -55 V return | 8 | Ground |
| 2 | -55 VDC | 9 | No connection |
| 3 | 12 VDC output | 10 | RPS present |
| 4 | 12 VDC output | 11 | Status 1 Status |
| 5 | 12 VDC output | 12 | Status 2 |
| 6 | 12 VDC output | 13 | Power good |
| 7 | Ground | 14 | Ground |

## Power Cord Requirements for AC-Powered Switches and AC Power Supplies

An AC power cord is not included with the AC power supply.
Power cords used with AC-powered switches or with Summit AC power supplies must meet the following requirements:

- The power cord must be agency-certified for the country of use.
- The power cord must have an IEC320-C13 connector for connection to the switch or power supply.
- The power cord must have an appropriately rated and approved wall plug applicable to the country of installation.
- For cords up to 6 feet ( 2 m ) long, the wire size must be 18 AWG (. $75 \mathrm{~mm}^{2}$ ) minimum; over 6 feet, the minimum wire size is 16 AWG ( $1.0 \mathrm{~mm}^{2}$ ).

The power cords for switches that use either the 1100 W or 715 W power supplies are keyed with a "notch" to ensure the proper orientation when plugged in. These cords are of 3x14 AWG.

You can purchase AC power cords for use in the US and Canada from Extreme Networks or from your local supplier.

## Console Connector Pinouts

Table 482 describes the pinouts for a DB-9 console plug connector.

Table 482: Pinouts for the DB-9 Console Connector

| Function | Pin Number | Direction |
| :--- | :--- | :--- |
| DCD (data carrier detect) | 1 | In |
| RXD (receive data) | 2 | In |
| TXD (transmit data) | 3 | Out |
| DTR (data terminal ready) | 4 | Out |
| GND (ground) | 5 | - |
| DSR (data set ready) | 6 | In |
| RTS (request to send) | 7 | Out |
| CTS (clear to send) | 8 | In |

Figure 390 shows the pinouts for a 9-pin to 25-pin (RS-232) null-modem cable.


Figure 390: Null-Modem Cable Pinouts
Figure 391 shows the pinouts for a 9-pin to 9-pin (PC-AT) null-modem serial cable.

Switch
PC- AT Serial Port
Cable connector: 9-pin female
Cable connector: 9-pin female

| Screen | Shell | - | Shell | Screen |
| :---: | :---: | :---: | :---: | :---: |
| DTR | 4 | - | 1 | DCD |
| TxD | 3 | $\bullet$ | 2 | RxD |
| RxD | 2 | $\bullet$ | 3 | TxD |
| CTS | 8 |  | 4 | DTR |
| Ground | 5 |  | 5 | Ground |
| DSR | 6 | $\bullet$ | 6 | DSR |
| RTS | 7 |  | 7 | RTS |
| DCD | 1 |  | 8 | CTS |

Figure 391: PC-AT Serial Null-modem Cable Pinouts
Table 483 shows the pinouts for the RJ45 console port on the Summit switches.

Table 483: RJ45 Console Port on Switch

| Function | Pin Number | Direction |
| :--- | :--- | :--- |
| CTS (clear to send) | 1 | In |
| DTR (data carrier detect) | 2 | Out |
| TXD (transmit data) | 3 | Out |
| GND (ground) | 4 | - |
| GND (ground) | 5 | - |
| RXD (receive data) | 6 | In |
| DSR (data set ready) | 7 | In |
| RTS (request to send) | 8 | Out |

Table 484 shows the pinouts for an RJ45-to-DB-9 adapter.

Table 484: Pinouts for an RJ45 to DB-9 Adapter

| Signal | RJ45 Pin | DB-9 Pin |
| :--- | :--- | :--- |
| CTS (clear to send) | 1 | 8 |
| DTR (data carrier detect) | 2 | 6 |
| TXD (transmit data) | 3 | 2 |
| GND (ground) | 4 | 5 |
| GND (ground) | 5 | 5 |
| RXD (receive data) | 6 | 3 |

Table 484：Pinouts for an RJ45 to DB－9 Adapter（continued）

| Signal | RJ45 Pin | DB－9 Pin |
| :--- | :--- | :--- |
| DSR（data set ready） | 7 | 4 |
| RTS（request to send） | 8 | 7 |

## Taiwan Warnings

Warning
警告使用者：
此為甲類資訊技術設備，於居住環境中使用時，可能會造成射頻擾動，在此種情況下，使用者會被要求採取某些適當的對策。

警告使用者：
此为 $A$ 级产品，在生活环境中，该产品可能会造成无线电干扰。在这种情况下，可能需要用户对干扰采取切实可行的措施。

## Japan（VCCI Class A）

Warning
This is a Class A product based on the standard of the VCCI Council．If this equipment is used
in a domestic environment，radio interference may occur，in which case the user may be required to take corrective actions．

この装置は，クラスA情報技術装置です。この装置を家庭珸境で使用す ると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

## Korea EMC Statement

Warning
이 기기는 업무용 환경에서 사용할 목적으로 적
4) 합성평가를 받은 기기로서 가정용 환경에서 사 용하는 경우 전파간섭의 우려가 있습니다.

## Glossary

## ad hoc mode

An 802.11 networking framework in which devices or stations communicate directly with each other, without the use of an AP.

## ARP

Address Resolution Protocol is part of the TCP/IP suite used to dynamically associate a device's physical address (MAC address) with its logical address (IP address). The system broadcasts an ARP request, containing the IP address, and the device with that IP address sends back its MAC address so that traffic can be transmitted.

## ATM

Asynchronous Transmission Mode is a start/stop transmission in which each character is preceded by a start signal and followed by one or more stop signals. A variable time interval can exist between characters. ATM is the preferred technology for the transfer of images.

## BSS

Basic Service Set is a wireless topology consisting of one access point connected to a wired network and a set of wireless devices. Also called an infrastructure network. See also IBSS (Independent Basic Service Set):

## CHAP

Challenge-Handshake Authentication Protocol is one of the two main authentication protocols used to verify a user's name and password for PPP Internet connections. CHAP is more secure because it performs a three-way handshake during the initial link establishment between the home and remote machines. It can also repeat the authentication anytime after the link has been established.

## CLI

Command Line Interface. The CLI provides an environment to issue commands to monitor and manage switches and wireless appliances.

## combination port

Also known as a combo port. A physical port, available on several Extreme Networks switch models, that pairs a copper port using RJ45 connectors with an optical (fiber) port. The copper port operates as an autonegotiating 10/100/1000BASE-T port. The optical port allows Gigabit Ethernet uplink connections through small form factor pluggable (SFP) interface modules.

## DoS attack

Denial of Service attacks occur when a critical network or computing resource is overwhelmed so that legitimate requests for service cannot succeed. In its simplest form, a DoS attack is indistinguishable from normal heavy traffic. ExtremeXOS software has configurable parameters that allow you to defeat DoS attacks.

## DSSS

Direct-Sequence Spread Spectrum is a transmission technology used in Local Area Wireless Network (LAWN) transmissions where a data signal at the sending station is combined with a higher data rate bit sequence, or chipping code, that divides the user data according to a spreading ratio. The chipping code is a redundant bit pattern for each bit that is transmitted, which increases the signal's resistance to
interference. If one or more bits in the pattern are damaged during transmission, the original data can be recovered due to the redundancy of the transmission. (Compare with FHSS (Frequency-Hopping. Spread Spectrum).)

## EAP-TLS/EAP-TTLS

EAP-TLS Extensible Authentication Protocol - Transport Layer Security. A general protocol for authentication that also supports multiple authentication methods, such as token cards, Kerberos, onetime passwords, certificates, public key authentication and smart cards.

IEEE 802.1x specifies how EAP should be encapsulated in LAN frames.
In wireless communications using EAP, a user requests connection to a WLAN through an access point, which then requests the identity of the user and transmits that identity to an authentication server such as RADIUS The server asks the access point for proof of identity, which the access point gets from the user and then sends back to the server to complete the authentication.

EAP-TLS provides for certificate-based and mutual authentication of the client and the network. It relies on client-side and server-side certificates to perform authentication and can be used to dynamically generate user-based and session-based WEP keys.

EAP-TTLS (Tunneled Transport Layer Security) is an extension of EAP-TLS to provide certificate-based, mutual authentication of the client and network through an encrypted tunnel, as well as to generate dynamic, per-user, per-session WEP keys. Unlike EAP-TLS, EAP-TTLS requires only server-side certificates.
(See also PEAP (Protected Extensible Authentication Protocol).)

## EAPS

Extreme Automatic Protection Switching is an Extreme Networks-proprietary version of the Ethernet Automatic Protection Switching protocol that prevents looping Layer 2 of the network. This feature is discussed in RFC 3619.

## EMC

Abbreviation for electromagnetic compatibility: the branch of electrical engineering that seeks to prevent EMI (electromagnetic interference) and physical damage caused by electromagnetic energy.

## ESD

Static electricity. To prevent personal injury and damage to equipment, ESD protection - in the form of special gloves or wrist straps - is necessary when handling certain electronic equipment.

## ESRP

Extreme Standby Router Protocol is an Extreme Networks-proprietary protocol that provides redundant Layer 2 and routing services to users.

## FHSS

Frequency-Hopping Spread Spectrum is a transmission technology used in Local Area Wireless Network (LAWN) transmissions where the data signal is modulated with a narrowband carrier signal that 'hops' in a random but predictable sequence from frequency to frequency as a function of time over a wide band of frequencies. This technique reduces interference. If synchronized properly, a single logical channel is maintained. (Compare with DSSS (Direct-Sequence Spread Spectrum).)

## full-duplex

The communication mode in which a device simultaneously sends and receives over the same link, doubling the bandwidth. Thus, a full-duplex 100 Mbps connection has a bandwidth of 200 Mbps , and so forth. A device either automatically adjusts its duplex mode to match that of a connecting device or you can configure the duplex mode; all devices at 1 Gbps or higher run only in full-duplex mode.

## half-duplex

The communication mode in which a device can either send or receive data, but not simultaneously. (Devices at 1 Gbps or higher do not run in half-duplex mode; they run only in full-duplex mode.)

## IBSS

An IBSS is the 802.11 term for an ad hoc network. See ad hoc mode.

## MIC

Message Integrity Check (or Code), also called 'Michael', is part of WPA and TKIP. The MIC is an additional 8-byte code inserted before the standard 4-byte ICV appended in by standard WEP to the 802.11 message. This greatly increases the difficulty in carrying out forgery attacks. Both integrity check mechanisms are calculated by the receiver and compared against the values sent by the sender in the frame. If the values match, there is assurance that the message has not been tampered with.

## MPLS

Multiprotocol Label Switching speeds up network traffic. When forwarding packets, the Layer 2 (Switching) label is used to avoid complex destination lookups in the routing table. MPLS uses Label Switched Paths (LSPs) to establish the network path. The packet will be labeled so that service providers can decide the best way to keep traffic flowing. The Multiprotocol Label Switching Transport Profile (MPLS-TP) extensions to MPLS are designed to meet service provider requirements and are used as a network layer technology in transport networks. MPLS-TP gives service providers a reliable packetbased technology that is based on circuit-based transport networking. MPLS-TP is expected to be a low cost level 2 technology (if the limited profile is implemented in isolation) that will provide QoS, end-toend OAM and protection switching.

## netmask

A netmask is a string of Os and 1s that mask, or screen out, the network part of an IP address, so that only the host computer part of the address remains. A frequently-used netmask is 255.255.255.0, used for a Class C subnet (one with up to 255 host computers). The ". 0 " in the netmask allows the specific host computer address to be visible.

## OSPF

An interior gateway routing protocol for TCP/IP networks, Open Shortest Path First uses a link state routing algorithm that calculates routes for packets based on a number of factors, including least hops, speed of transmission lines, and congestion delays. You can also configure certain cost metrics for the algorithm. This protocol is more efficient and scalable than vector-distance routing protocols. OSPF features include least-cost routing, ECMP routing, and load balancing. Although OSPF requires CPU power and memory space, it results in smaller, less frequent router table updates throughout the network. This protocol is more efficient and scalable than vector-distance routing protocols.

## PEAP

Protected Extensible Authentication Protocol is an IETF draft standard to authenticate wireless LAN clients without requiring them to have certificates. In PEAP authentication, first the user authenticates
the authentication server, then the authentication server authenticates the user. If the first phase is successful, the user is then authenticated over the SSL tunnel created in phase one using EAP-Generic Token Card (EAP-GTC) or Microsoft Challenged Handshake Protocol Version 2 (MSCHAP V2). (See also EAP-TLS/EAP-TTLS.)

## PoE

The Power over Ethernet standard (IEEE 802.3af) defines how power can be provided to network devices over existing Ethernet connections, eliminating the need for additional external power supplies.

## QoS

Quality of Service is a technique that is used to manage network resources and guarantee a bandwidth relationship between individual applications or protocols. A communications network transports a multitude of applications and data, including high-quality video and delay-sensitive data such as realtime voice. Networks must provide secure, predictable, measurable, and sometimes guaranteed services. Achieving the required QoS becomes the secret to a successful end-to-end business solution.

## RIP

This IGP vector-distance routing protocol is part of the TCP/IP suite and maintains tables of all known destinations and the number of hops required to reach each. Using Routing Information Protocol, routers periodically exchange entire routing tables. RIP is suitable for use only as an IGP.

## SNMP

Simple Network Management Protocol is a standard that uses a common software agent to remotely monitor and set network configuration and runtime parameters. SNMP operates in a multivendor environment, and the agent uses MIBs, which define what information is available from any manageable network device. You can also set traps using SNMP, which send notifications of network events to the system log.

## SSL

Secure Socket Layer is a protocol for transmitting private documents using the Internet. SSL works by using a public key to encrypt data that is transferred over the SSL connection. SSL uses the public-andprivate key encryption system, which includes the use of a digital certificate. SSL is used for other applications than SSH, for example, OpenFlow.

## syslog

A protocol used for the transmission of event notification messages across networks, originally developed on the University of California Berkeley Software Distribution (BSD) TCP/IP system implementations, and now embedded in many other operating systems and networked devices. A device generates a messages, a relay receives and forwards the messages, and a collector (a syslog server) receives the messages without relaying them.
syslog uses the UDP as its underlying transport layer mechanism. The UDP port that has been assigned to syslog is 514. (RFC 3164)

## VLAN

The term VLAN is used to refer to a collection of devices that communicate as if they are on the same physical LAN. Any set of ports (including all ports on the switch) is considered a VLAN. LAN segments are not restricted by the hardware that physically connects them. The segments are defined by flexible user groups you create with the CLI.

## Index

## Numerics

10933 DC power supply
connecting ground wire 289
connecting to source voltage 289
10934A DC power supply, see 10944 DC power supply
10944 DC power supply
connecting ground wire 289
connecting to source voltage 289
10GBASE-T ports 312
1100 W AC power supply
features 164
installing 310
replacing 374
specifications 537
300 W AC power supply
features 160
removing 362
specifications 525,526
300 W DC power supply
connecting ground wire 289
features 160
installing 286, 287, 381, 382
preparing cables 287
replacing 378, 381, 382
specifications 526
350 W AC power supply
replacing 364
specifications 527
40G cable 250
450 W AC power supply
features 161
installing 308
replacing 366
450 W DC power supply
connecting ground wire 295
connecting to source voltage 297
features 161
installation 292
installing 294, 386-388
preparing cables 293
removing 385
replacing 384, 386-388
550 W AC power supply
features 161
installing 308
replacing 366
specifications 530
550 W DC power supply
connecting ground wire 295
connecting to source voltage 297
features 161
installation 292
installing 294, 386-388
preparing cables 293
removing 385

550 W DC power supply (continued) replacing 384, 386-388
715 W AC power supply
features 162
installing 310
replacing 364
specifications 533
715 W DC power supply features 162
750 W AC power supply
features 163
installing in EPS-C2 336
removing 368
specifications 534
750 W DC power supply features 163
850 W AC power supply
features 163
replacing 372
850 W DC power supply
features 163
installing 392, 393
removing 391
replacing 391-393

## A

AC power
connecting to switch 281
installing power supply 310
removing PSU 405
replaceable power supplies 28, 159
requirements for cords 543
AC power supply
installing 305
access 188
acoustic noise
Summit X150 switch 425
Summit X250e switch 436
Summit X350 switch 439
Summit X440 switch 447
Summit X450 switch 456
Summit X450a switch 462
Summit X450e switch 466
Summit X460 switch 474
Summit X480 switch 489
Summit X650 switch 500
Summit X670 switch 514
X450-G2 switch 467
X460-G2 switch 481
X670-G2 switch 516
X770 switch 523
acquired node
definition 213
active node 212
active topology 212
airflow 396
alert, power supply 160, 163
alternate stacking
ports 208, 210
X440 series switches 217
X450-G2 series switches 219, 220
X450a series switches 217
X450e series switches 217
X460 series switches 220
X460-G2 series switches 222-224
X480 series switches 225, 226
X670 series switches 228, 229
X670-G2 series switches 229-231
X670V series switches 228, 229
X770 series switches 231, 232
alternate stacking ports 232
amperage
calculating for UPS 200
ANSI standards 201
automatic failover
setting up 12

## B

back-to-front cooling 396
backup node
definition 213
redundancy 204
bend radius 193, 194
BICSI 192
building codes 187
Building Industry Consulting Service International., see BICSI

## C

cable
300 W DC power supply 287
450 W power supply 293
550 W power supply 293
ANSI standards 201
bend radius 194
bundling 193
category 5193
connecting to EPS-C2 337
fiber optic 194, 312
for 10GBASE-T ports 312
for stacking 235, 261
installing 193, 194
labeling 193
management 251, 255, 257
network interface 312
plenum-rated 193
QSFP+ direct-attach 261
RJ45 197
slack 193
standards 192
SummitStack 250
SummitStack 128G 215, 251
cable (continued)
SummitStack 128G/20G 253
SummitStack 128G/64G 255
SummitStack 64G 257
SummitStack 64G/20G 259
types and distances 195
candidate node 213
category 5 cable 193
clock module replacing 403
combination ports 12
combining
switches in a stack 233
commercial building standards 201
configuration
ExtremeXOS 315
IP address 315
VLAN 315
connecting
to management console 313
connecting DC power
10933 DC power supply 289
10944 DC power supply 289
450 W DC power supply 297
550 W DC power supply 297
connecting power 281, 282
connector jackets
RJ45 197
connector pinouts
DB-9 console connector 544
DC wiring harness 541
null-modem cable 544
redundant power connector 539
console port
for stacked configurations 262
on switch 544
settings 313
Summit X150 series 13
Summit $\times 250$ e series 18
Summit X350 series 31
Summit $\times 430$ series 36
Summit X440 series 42
Summit X450 series 66
Summit X450a series 66
Summit X450e series 66
Summit X460 series 99
Summit X480 series 121
Summit X650 series 126
Summit X670 series 129
X450-G2 series 88
X460-G2 series 107, 108
X670-G2 series 135
X770 series 139
control path 212
Conventions
notice icons 8
text 8
cooling 396
cords
requirements 543
selecting 413

## D

daisy chain topology 207
data port 213
DB-9 console connector pinouts 544
DB-9 pinouts 544
DC power
connecting EPS-150DC 320
connecting Summit 850 W DC power supply 302
connecting to switch 282, 289, 297
removing PSU 406
replaceable power supplies 28, 159
DC wiring harness
connecting to DC source 320
connecting to EPS-150DC 321
specifications 541
DC-I battery return configuration 201
DC-powered switches
Summit X250e-24tDC 20
Summit X250e-24xDC 22
Summit X250e-48tDC 26
Summit X440-24tDC 48
Summit X440-48tDC 58
Summit X450a-24tDC 72
Summit X450a-24xDC 75
Summit X450a-48tDC 78
design standards 201
desktop mounting 280
distances
cables 195
documentation
feedback 9
related 10
downloading
ExtremeXOS to switch 315
dual master condition 207

## E

Easy-Setup 214
election
node role 214
priority 214
electric power
connecting to switch 281, 282
electrical codes 187
electrostatic discharge, see ESD
environmental requirements
building codes 187
electrical codes 187
electrostatic discharge (ESD) 190
humidity 190
temperature 188
wiring closet 188
EPS-150DC power supply

EPS-150DC power supply (continued)
features 149
installing 318, 319
overview 149
replacing 395
with Summit X250e-24tDC switch 20
with Summit X450a-24tDC switch 72
with Summit X450a-24xDC switch 22, 75
with Summit X450a-48tDC switch 26,78
EPS-160 power supply
features 150
installing 323, 324
replacing 376
with EPS-T 150
with Summit X450-24t switch 68
with Summit X450-24x switch 69
EPS-500 power supply
features 151
installing 326
rack installation 326
with Summit X350-24t switch 32
with Summit X350a-48t switch 33
with Summit X450a-48t switch 76,83
with Summit X450e-24p switch 81
with Summit X450e-24t switch 80
EPS-600LS External Power Module
features 152
installing 328, 330
replacing 377
support for 29
with Summit X250e-48p switch 27
with Summit X450e-48p switch 84
EPS-C chassis
installing EPS-600LS power supply 330
rack installation 329
with EPS-600LS 328
EPS-C2
$2 \times 7$ connector 153-155
$2 \times 9$ connector 153-155
power delivery 153-155
specifications 541
EPS-C2 power supply
connecting cables 337
connecting power cord 339
installing 333, 336
installing chassis 334
overview 152
EPS-LD power supply
features 155
installing 341, 342
replacing 376
with Summit X450a-24t switch 71
with Summit X450a-24x switch 73
with Summit X450e-24p switch 81 EPS-T
with EPS-160 150
EPS-T chassis
installing 323

EPS-T chassis (continued) with EPS-160 324
EPS-T2
with EPS-150DC 149
EPS-T2 (with EPS-150DC) 318, 319
EPS-T2 chassis
rack installation 319
equipment rack
grounding 191
mechanical recommendations 191
mounting holes 191
securing 192
service access 191
space requirements 191
ESD
discharge from cable 193
system protection 190
EXOS, see ExtremeXOS
external power supply
EPS-150DC 149
EPS-160 150
EPS-500 151
EPS-600LS 152
EPS-C2 152
EPS-LD 155
RPS-500p 159
STK-RPS-150PS 158
see also redundant power supply (RPS)
Extreme Stacking Tool 237
ExtremeSwitching switches connecting power 281
ExtremeXOS
configuring 315
downloading to switch 315

## F

failover
setting up 12
fan
airflow 396
back-to-front 139
replacing 396
Fan LED
Summit X450a switch 87
fan speed
Summit X 440 switch 446
Summit X450a switch 457
Summit X460 switch 474
Summit X480 switches 488
Summit X650 switch 500
Summit X670 switch 510
X450-G2 switch 468
X460-G2 switch 483
features
platform-specific 8
fiber optic cable
bend radius 194
connecting 312
fiber optic cable (continued)
handling 194
installing 194
first switch login 314
free-standing mode 280
frequency, see radio frequency interference (RFI)
front-to-back cooling 396

## G

ground wire
connecting 289, 295, 301
grounding
300 W DC power supply 289
450 W DC power supply 295
550 W DC power supply 295
DC-powered switch 282
racks 191
requirements 201
Summit 850 W DC power supply 301
wiring closet 188

## H

harness
connecting to DC source 320
connecting to EPS-150DC 321
hitless failover 213
humidity 190
industry standards 201
initial switch login 314
installing
10933 DC power supply 289
10944 DC power supply 289
1100 W AC power supply 310
300 W AC power supply 305
300 W DC power supply $286,287,379,381,382$
450 W AC power supply 308
450 W DC power supply 292, 386-388
450 W power supply 294, 295, 297
550 W AC power supply 308
550 W DC power supply $292,386-388$
550 W power supply $294,295,297$
715 W AC power supply 310
750 W AC power supply 305
850 W DC power supply 392, 393
connecting power 281, 282
EPS-160 power supply 323
EPS-600LS External Power Module 330
EPS-C2 power supply $333,334,337,339$
EPS-LD power supply 342
EPS-T chassis 323
fiber optic cable 194
option cards 354, 356, 357
personnel 264
power supply in EPS-C2 chassis 336
installing (continued)
power supply unit (PSU) 317
preparing 264
safety information 263
stacking module 357
STK-RPS-150PS power supply 344-348
Summit 850 W AC power supply 311
Summit 850 W DC power supply 298, 301
Summit switches 265, 280
Summit X150 switch 278, 280
Summit X250e switch 278, 280
Summit X350 switch 278, 280
Summit X430 switch 278, 280
Summit X430-8p switch 265
Summit X440 switch 278, 280
Summit X440-8t switch 265
Summit X450 switch 278, 280
Summit X450-G2 switch 267, 280
Summit X450a switch 278, 280
Summit X450e switch 278, 280
Summit X460 switch 269, 280
Summit X460-G2 switch 270, 280
Summit X480 switch 270
Summit X650 switch 272
Summit X670 switch 274, 280
Summit X670-G2 switch 276, 280
Summit X770 switch 277, 280
switches 264
tools 264
VIM2 module 358, 360
internal power supply 28, 159
IP settings
configuring 315

## J

jackets
RJ45 connector 197

## L

labeling cables 193
LEDs
stack number indicator 203
Summit X150 series 17
Summit $\times 250$ e series 29,30
Summit X350 series 35
Summit X430 series 42
Summit X440 series 64
Summit X450 switch 87
Summit $X 460$ series 106
Summit X480 series 124
Summit X650 series 128
Summit X670 series 134
X450-G2 97
X460-G2 119
X670-G2 138
X770 142
local management connection 313
logging in to the switch 314

## M

MAC address 213
management port connecting to switch 313
for stacked configurations 262
settings 313
Summit X150 series 13
Summit X250e series 18
Summit X350 series 31
Summit $X 430$ series 36
Summit $X 440$ series 42
Summit X450 series 66
Summit X450a series 66
Summit $\times 450$ e series 66
Summit X460 series 99
Summit X480 series 121
Summit X650 series 126
Summit X670 series 129
X450-G2 series 88
X460-G2 series 107, 108
X670-G2 series 135
X770 series 139
master node
definition 213
redundancy 204
model numbers 12
motion sensor 131, 133, 134
multiple-rack stacking 241, 249

## N

native stacking 212
native stacking ports 203
network interface connections 312
node address 213
node role
definition 213
election 214
noise specifications, see acoustic noise null-modem cable pinouts 544

## 0

operating environment requirements 188 operational node 214
option cards
installing 354, 356, 357
replacing 399, 402
tools for installing 354
XGM2-2bt 170
XGM3-2sf 177
XGM3S-2sf 178
XGM3S-2xf 178
XGM3SB-4sf 179
see also port option cards
optional ports
optional ports (continued)
X460-G2 series 180

## P

pinouts
DB-9 console connector 544
DC wiring harness 541
null-modem cable 544
redundant power connector 539
planning
site 186
platform dependence 8
plenum-rated cable 193
PoE+ 46, 54, 62, 63, 99
port option cards
types 165
VIM-2a 181
VIM-2ss 181
VIM-2t 182
VIM-2x 183
XGM-2xn 166
XGM2-2sf 169
XGM2-2xf 168
XGM2-2xn 167
see also option cards
ports
alternate stacking 208, 217, 219, 220, 222-226,
228-232
combination 12
console port settings 313
for stacked configurations 262
management 313
native stacking 203
X450-G2 series switches 89-96
X460-G2 series switches 109-118
X670-G2 series switches 136, 137
X770 series switches 140
power
connecting to switch 281, 282, 289, 297
requirements for cords 543
power cables, see cable
power cords
connecting to EPS-C2 339
selecting 199, 413
power over Ethernet (PoE)
power requirements 156, 198
power requirements
PoE devices 198
power supply 199
power specifications
Summit X150 switch 425
Summit X250e switch 430-434
Summit X350 switch 437
Summit X430 switch 441, 442
Summit X440 switch 448-451
Summit X 450 switch 454
Summit X450a switch 457-459
Summit X450e switch 463, 464
power specifications (continued) Summit X460 switch 474-477 Summit X480 switch 489-497
Summit X650 switch 500-507
Summit X670 switch 511-513
X450-G2 switch 469
X460-G2 switch 484, 485
X670-G2 switch 516, 517
X770 switch 520
power supplies
Summit X440 switch 448
power supply
RPS-500p 349-352
power supply unit (PSU)
1100 W AC 164, 310, 537
300 W 381, 382
300 W AC 160, 305, 525, 526
300 W DC 286, 287, 379, 526
350 W AC 527
450 W 292, 293, 384, 386-388
450 W AC 161
550 W 292, 293, 384, 386-388
550 W AC 161, 530
715 W AC 162, 310, 533
750 W AC 163, 305, 336, 534
850 W 391-393
850 W AC 163
alert 160, 163
EPS-150DC 318, 319
EPS-160 323, 324
EPS-500 326
EPS-600LS 29, 328
EPS-LD 341
external 537-540
for X450-G2 switches 468
for X460-G2 switches 483
for X770 switches 520
installing 305, 310, 317, 379
power requirements 199
removing from switch 405, 406
replaceable 28,159
replacing 379
safety 317
Summit 450 W AC 528, 529
Summit 450 W DC 529
Summit 550 W AC 531, 532
Summit 850 W AC 311, 535, 536
Summit 850 W DC 298, 535, 536
priority
for node role election 214

## Q

QSFP+ cables 261

## R

rack
removing switch 407
rack installation
EPS-500 power supply 326
EPS-C chassis 329
EPS-C2 chassis 334
EPS-LD power supply 342
EPS-T chassis 323
EPS-T2 chassis 319
rack specifications
grounding 191
securing to floor 192
space requirements 191
radio frequency interference (RFI)
patch panel installation 193
preventing 198
redundancy in a stack 204
redundant power supply (RPS)
EPS-600LS 29
EPS-C2 152, 541
RPS-500p 159, 349-352, 542
specifications 537-540
STK-RPS-150PS 158
tools for installing 318
redundant uplink ports 12
removing
1100 W AC power supply 374
300 W AC power supply 362
300 W DC power supply 378
350 W AC power supply 364
450 W DC power supply 385
550 W DC power supply 385
715 W AC power supply 364
750 W AC power supply 368
850 W AC power supply 372
850 W DC power supply 391
EPS-150DC power supply 395
EPS-160 power supply 376
EPS-600LS power module 377
EPS-LD power supply 376
fan module 396
STK-RPS-150PS power supply 377
switch 405-407
VIM 400
replaceable power supply 28,159
replacing
1100 W AC power supply 374
300 W AC power supply 362
300 W DC power supply $378,379,381,382$
350 W AC power supply 364
450 W AC power supply 366
450 W DC power supply 384-388
550 W AC power supply 366
550 W DC power supply 384-388
715 W AC power supply 364
750 W AC power supply 368
850 W AC power supply 372
850 W DC power supply 391-393
clock module 403
replacing (continued)
EPS-150DC power supply 395
EPS-160 power supply 376
EPS-600LS power module 377
EPS-LD power supply 376
fan module 396
port option cards 399, 402
stacking module 398
versatile interface module (VIM) 403
VIM 400
XGM3/XGM3S port option card 399
XGM3SB-4sf option card 398
restricted 188
restricted access 188
RFI, see radio frequency interference (RFI)
ring topology 206
RJ45 cable 197
RPS-500p power supply
connecting to power 352
installing 349-351
overview 159
specifications 542
rules for redundant uplink ports 12

## S

safety
precautions when installing 263
requirements 409
when installing PSUs 317
service access to the rack 191
settings
for management console 313
signal quality 198
single-rack stacking 246-248
site planning 186
site preparation 264
slack in cable 193
slot number 203
slots
X450-G2 series switches 89-96
X460-G2 series 180
X460-G2 series switches 109-118
X670-G2 series switches 136, 137
X770 series switches 140
space requirements, rack 191
specifications
1100 W AC power supply 537
300 W AC power supply 525,526
300 W DC power supply 526
350 W AC power supply 527
550 W AC power supply 530
715 W AC power supply 533
750 W AC power supply 534
EPS-C2 541
equipment racks 191
redundant power supply (RPS) 537-540
RPS-500p 542
STK-RPS-150PS power supply 523-525
specifications (continued)
Summit 450 W AC power supply 528,529
Summit 450 W DC power supply 529
Summit 550 W AC power supply 531, 532
Summit 850 W AC power supply 535,536
Summit 850 W DC power supply 535,536
Summit X150 switch 425
Summit X250e switch 429
Summit X350 switch 436
Summit $X 430$ switch 439
Summit X440 switch 444
Summit X450 switch 454, 456
Summit X450e switch 462
Summit $X 460$ switch 472, 474-477
Summit X480 switch 487, 489, 492, 495
Summit X650 switch 499, 500, 502, 505
Summit X670 switch 509, 511, 512
X450-G2 switch 466, 469, 470
X460-G2 switch 479, 483, 486
X670-G2 switch 515, 517, 518
X770 switch 519-522
stack 212
stack master 215
stack number indicator 203
stackable switch 212
stacking
40G cables 250
available methods 210
backup 204
cables 235
combining switch models 233
connecting cables
SummitStack 128G 251, 252
SummitStack 128G/20G 253
SummitStack 128G/64G 255
SummitStack 64G 257
SummitStack 64G/20G 259
connecting management port 262
connection order 239
daisy chain 207
definition 203
dual master condition 207
examples 246-249
guidelines 215
LEDs 97, 106, 119, 124, 128, 134, 138, 142, 203
master 204
mixing stacking port types 239
multiple racks 241
multiple-rack 249
native stacking ports 203
physical configuration examples 245
ports, native and alternate 208, 217, 219, 220, 222-226,
228-232
priority 204
recommendations 215
redundancy 204
ring topology 206
single-rack 246-248
connecting cables (continued)
slot number 203
stack number indicator $97,106,119,124,128,134,138$,
142, 203
SummitStack-V160 242
SummitStack-V320 243
SummitStack-V80 module 241
terminology 212
tool 237
top of rack 249
troubleshooting 203
VIM2 242
VIM2-SummitStack-V80 module 241
VIM3 242, 243
VIM4 242, 243
web app 237
with VIM1-SummitStack Modules 248
with VIMs 249
X250e series switches 217
X440 series switches 217
X450-G2 series switches 219, 220
X450a series switches 217
X450e series switches 217
X460 series switches 220
X460-G2 series switches 222-225
X480 series switches 225,226
X650 series switches 227, 248
X670 series switches 184, 228, 229
X670-G2 series switches 229-231
X770 series switches 231, 232
stacking link 212
stacking module
replacing 398
stacking port 212
standards
cabling 192, 201
commercial building 201
design 201
grounding 201
standby node
definition 213
STK-RPS-150PS power supply
connecting to power 348
installing in RPS shelf 345
installing shelf into rack 346, 347
LEDs 158
overview 158
removing 377
specifications 523-525
unpacking 344
Summit 450 W AC power supply specifications 528, 529
Summit 450 W DC power supply specifications 529
Summit 550 W AC power supply specifications 531, 532
Summit 850 W AC power supply installing 311

Summit 850 W DC power supply connecting ground wire 301 installing 298
Summit 850 W power supply specifications 535,536
Summit series switches desktop mounting 280
Summit switches connecting power 281, 282 installing 265 LEDs

Summit X150 series 17
Summit $\times 250$ e series 29,30
Summit X350 series 35
Summit X430 series 42
Summit X440 series 64
Summit X450 series 87
Summit $X 450$ a series 87
Summit X450e series 87
Summit X460 series 106
Summit X480 series 124
Summit X650 series 128
Summit X670 series 134
Summit X150 series switches
acoustic noise 425
features 13
installing 278, 280
LEDS 17
specifications 425
Summit X150-24p switch 15
Summit X150-24t switch 14
Summit X150-48t switch 16
Summit X250e series switches
acoustic noise 436
features 18
installing 278, 280
LEDs 29, 30
power specifications 430-434
specifications 429
Summit X250e-24p switch 24
Summit X250e-24t switch 19
Summit X250e-24tDC switch 20
Summit X250e-24x switch 21
Summit X250e-24xDC switch 22
Summit $\times 250 \mathrm{e}-48 \mathrm{p}$ switch 27
Summit X250e-48t switch 25
Summit $\times 250 \mathrm{e}-48$ tDC switch 26
Summit X350 series switches
acoustic noise 439
features 31
installing 278, 280
LEDs 35
power specifications 437
specifications 436
Summit $\times 350-24$ t switch 32
Summit $\times 350-48$ t switch 33
Summit $\times 430$ series switches features 36

Summit X430 series switches (continued)
installing 265, 278, 280
LEDs 42
power specifications 441, 442
specifications 439
Summit X430-24p switch 39
Summit X430-24t switch 38
Summit X430-48t switch 41
Summit $\times 430-8$ p switch 37
Summit X440 series switches
acoustic noise 447
fan speed 446
features 42
installing 265, 278, 280
LEDs 64
power specifications 448-451
power supplies 448
specifications 444
Summit X440-24p switch 54
Summit X440-24p-10G switch 56
Summit X440-24t switch 47, 57
Summit X440-24t-10G switch 49
Summit X440-24tDC switch 48
Summit X440-24x switch 52
Summit X440-24x-10G switch 53
Summit X440-48p switch 62
Summit X440-48p-10G switch 63
Summit X440-48t-10G switch 59
Summit X440-48tDC switch 58
Summit $\times 440-8$ p switch 46
Summit $\times 440-8$ s switch 44
Summit X440-L2-24t switch 51
Summit X440-L2-48t switch 60
Summit X450 series switches
acoustic noise 456
features 66, 67
installing 278, 280
LEDs 87
power specifications 454
specifications 454
Summit X450-24t switch 68
Summit X450-G2 series switches
installing 267, 280
Summit $\times 450$ a series switch
features 70
Summit X450a series switches
acoustic noise 462
fan speed 457
features 66
installing 278, 280
LEDs 87
power specifications 457-459
specifications 456
Summit X450a-24t switch 71
Summit X450a-24tDC switch 72
Summit X450a-24x switch 73
Summit $\times 450 \mathrm{a}-24 \times \mathrm{DC}$ switch 75
Summit X450a-48t switch 76

Summit X450a series switches (continued)
Summit X450a-48tDC switch 78
Summit X450e series switch features 79
Summit X450e series switches
acoustic noise 466
features 66
installing 278, 280
LEDs 87
power specifications 463, 464
specifications 462
Summit X450e-24p switch 81
Summit X450e-24t switch 80
Summit X450e-48p power supply 86
Summit X450e-48p switch 84
Summit X450e-48t switch 83
Summit X460 series switches
acoustic noise 474
fan speed 474
features 99
installing 269, 280
LEDs 106
power specifications 474-477
specifications 472, 474-477
Summit X460-24p switch 102
Summit X460-24t switch 100
Summit X460-24x switch 101
Summit X460-48p switch 105
Summit X460-48t switch 103
Summit X460-48x switch 104
Summit X460-G2 series switches
installing 270, 280
Summit X480 series switches
features 121
installing 270
LEDs 124
power specifications 489-497
power supplies 528, 529
specifications 487, 489, 492, 495
Summit X480-24x switch 121
Summit X480-48t switch 122
Summit X480-48x switch 123
Summit X480 switches
acoustic noise 489
fan speed 488
Summit X650 series switches
acoustic noise 500
fan speed 500
features 126
installing 272
LEDs 128
power specifications 500-507
power supplies 535, 536
specifications 499, 500, 502, 505
Summit X650-24t switch 126
Summit X650-24x switch 127
Summit X670 series switches acoustic noise 514

Summit $\times 670$ series switches (continued)
fan speed 510
features 129
installing 274, 280
LEDs 134
power specifications 511-513
power supplies 528, 529
specifications 509, 511, 512
Summit X670-48x switch 131
Summit X670V-48t switch 132
Summit X670V-48X switch 133
Summit X670-G2 series switches
installing 276, 280
power supplies 531, 532
Summit X770 series switches
installing 277, 280
SummitStack
available methods 210
path 212
segment 214
state 214
topology 205, 212
web app 237
SummitStack 128G cable 215, 251
SummitStack 128G/20G cable 253
SummitStack 128G/64G cable 255
SummitStack 64G cable 257
SummitStack 64G/20G cable 259
SummitStack configuration 202
SummitStack stacking module
features 180
installing 357
SummitStack-V feature 208, 210, 217, 219, 220, 222-226,
228-232
SummitStack-V160 242
SummitStack-V320 243
SummitStack-V80 module 241
SummitStack-V80 stacking module
features 180
installing 357
SummitStack-V84 219, 220
support 9
switches
initial login 314
preparing to install 264
removing 405, 407
removing PSU 405, 406
safety information 263
Synchronous Ethernet 101, 104

## T

TAA, see Trade Agreements Act
technical specifications, see specifications
technical support
contacting 9
temperature 188
TM-CLK module 183
tools for installing equipment
tools for installing equipment (continued)
300 W DC power supply 286
450 W DC power supply 293
550 W DC power supply 293
option card 354
redundant power supply (RPS) 318
Summit 850 W DC power supply 299
switches 264
top-of-rack stacking configuration 249
Trade Agreements Act 11
transition time
UPS 200
troubleshooting stack connections 203

## U

unshielded twisted pair, see UTP cable
uplink redundancy
on switches 12
setting up 12
UPS (uninterruptible power supply)
requirements 199
selecting 200
transition time 200
UTP cable
bend radius 193
category 5193
discharge ESD 193
preventing RFI 198

## V

V-320 stacking 243
versatile interface module (VIM)
installing 358, 360
replacing 400, 403
stacking example 249
types 165
using with Summit X480 121
using with Summit X650 126
VIM1-SummitStack 174
VIM1-SummitStack256 175
VIM1-SummitStack512 module 176
VIM2-10G4X 170
VIM2-SummitStack 171
VIM2-SummitStack-V80 172
VIM2-SummitStack128 172
VIM3-40G4X 173, 176
VIM4-40G4X 184
versatile interface modules (VIM)
VIM1-10G8X 174
VIM, see versatile interface module (VIM)
VIM-2a 181
VIM-2a module
for stacking 222-225
VIM-2ss 181
VIM-2ss module
for stacking 222-225
VIM-2t 182

VIM-2x 183
VIM1-10G8X module
features 174
VIM1-SummitStack module features 174 stacking example 248, 249
VIM1-SummitStack256 module features 175 in a stack 239
VIM1-SummitStack512 module features 176 using stacking ports 245
VIM2
stacking 242
VIM2-10G4X module features 170
VIM2-SummitStack module features 171 stacking example 249
VIM2-SummitStack port option card and X 460 series switches 220
VIM2-SummitStack-V80 module features 172
VIM2-SummitStack-V80 port option card and X 460 series switches 220
VIM2-SummitStack128 module features 172
VIM3
stacking 242, 243
VIM3-40G4X module features 173, 176
VIM4
stacking 242, 243
VIM4-40G4X module features 184
VLAN
configuring 315

## W

web app
SummitStack 237
wire
connecting 289, 295
wiring closet
electrostatic discharge (ESD) 190
floor coverings 188
grounding 188
humidity 190
rack, securing 192
temperature 188
wiring harness
connecting to DC source 320
connecting to EPS-150DC 321
wiring terminals 191
with EPS-T chassis 324

## X

X150 series switches power supplies 537-540
X250e series switches power supplies 537-540 stacking 217
X250e switches
PoE configurations 156
X440 switches
alternate stacking 217
stacking 217
X450 series switches power supplies 537-540
X450-G2 series switches
715 W AC power supply 364
acoustic noise 467
fan speed 468
features 88
LEDs 97
power specifications 469
power supplies 533, 537
power supply unit (PSU) 468
specifications 466, 469, 470
stacking 219, 220
X450-G2-24p-10GE4 switch 92
X450-G2-24p-GE4 switch 91
X450-G2-24t-10GE4 switch 90
X450-G2-24t-GE4 switch 89
X450-G2-48p-10GE4 switch 96
X450-G2-48p-GE4 switch 95
X450-G2-48t-10GE4 switch 94
X450-G2-48t-GE4 switch 93
X450a series switches
power supplies 537-540
stacking 217
X450e series switches
power supplies 537-540
stacking 217
X450e switches
PoE configurations 156
X460 series switches
installing port option cards 356, 357
power supplies 525,526, 534
X460 switches
stacking 220
X460-G2 series switches
350 W AC power supply 364
350 W power supply 527
715 W AC power supply 364
acoustic noise 481
fan speed 483
features 107, 108
LEDs 119
optional ports 180
power specifications 484, 485
power supplies $525,526,533,537$
power supply unit (PSU) 483
replacing optional modules 399, 403

X460-G2 series switches (continued) slots 180
specifications 479, 483, 486
stacking 222-225
X460-G2-24p-10GE4 switch 113
X460-G2-24p-GE4 switch 112
X460-G2-24t-10GE4 switch 110
X460-G2-24t-GE4 switch 109
X460-G2-24x-10GE4 switch 111
X460-G2-48p-10GE4 switch 118
X460-G2-48p-GE4 switch 117
X460-G2-48t-10GE4 switch 115
X460-G2-48t-GE4 switch 114
X460-G2-48x-10GE4 switch 116
X480 series switches
installing 450 W AC power supply 308
replacing 450 W AC power supply 366
X480 switches
stacking 225, 226
X650 Series switches
stacking example 248
X650 switches
stacking 227
X670 series switches
installing 450 W AC power supply 308
installing 550 W AC power supply 308
power supplies 530
replacing 450 W AC power supply 366
replacing 550 W AC power supply 366
X670 switches
stacking 228, 229
X670-G2 series switches
acoustic noise 516
features 135
installing 550 W AC power supply 308
LEDs 138
power specifications 516, 517
replacing 450 W AC power supply 366
replacing 550 W AC power supply 366
specifications 515, 517, 518
X670-G2-48x-4q switch 136
X670-G2-72X switch 137
X670-G2 switches
stacking 229-231
X670V switches
stacking 184, 228, 229
X770 series switches
acoustic noise 523
airflow options 139
features 139
installing 550 W AC power supply 308
LEDs 142
power specifications 520
power supplies 530
power supply unit (PSU) 520
replacing 450 W AC power supply 366
replacing 550 W AC power supply 366
specifications 519-522

X770 series switches (continued)
X770-32q switch 140
X770 switches
stacking 231, 232
XENPAK modules 166, 167
XGM-2xn option card installing 354
XGM-2xn port option card replacing 402
XGM2-2bt option card features 170 installing 354
XGM2-2bt port option card replacing 402
XGM2-2sf option card features 169 installing 354
XGM2-2sf port option card replacing 402
XGM2-2xf option card features 168 installing 354
XGM2-2xf port option card replacing 402
XGM2-2xn option card
features 167 installing 354
XGM2-2xn port option card replacing 402
XGM3-2sf option card features 177
XGM3-2sf port option card replacing 399
XGM3S-2sf option card
features 178
installing 356
XGM3S-2sf port option card replacing 399
XGM3S-2xf option card
features 178
installing 356
XGM3S-2xf port option card
replacing 399
XGM3SB-4sf option card
features 179
installing 357
replacing 398
XGM3SB-4sf port option card replacing 399

## Z

ZR XENPAK 167


[^0]:    ${ }^{1}$ These states for the Fan LED occur only on Summit X450a-48tDC switches with a manufacturing part number of 800294-00 and X450a-48tDC-TAA switches with a manufacturing part number of 800337-00.

[^1]:    1 = USB port
    $4=40 \mathrm{G} / 10 \mathrm{G}$ QSFP+ Ethernet ports

[^2]:    * We recommend against combining an $A C$ and $D C$ power supply in the same $X 650$ series switch.

[^3]:    2 Proprietary to Extreme Networks. Connections between two Extreme Networks 1000BASE-LX interfaces that use 10/125 $\mu \mathrm{m}$ single-mode fiber can use a maximum distance of 10,000 meters.

[^4]:    ${ }^{3}$ Combined over paired ports
    4 The VIM2-SS128 module can be used for stacking X480 switches. It can also stack with SS256 with a conversion cable.

[^5]:    1 Go to the Product Registration page and provide the requested information.
    2 Enter the serial number of the switch.
    You can obtain the serial number by entering show version on the management console, as described in step 5 on page 315.
    3 From the Software Download page, download the ExtremeXOS image file to the PC.

[^6]:    Extreme Networks-Geräte und deren Komponenten dürfen nur durch geschulte und qualifizierte Wartungstechniker (wie in IEC 60950-1 und AS/NZS 3260 definiert) installiert, ausgetauscht oder gewartet werden. Dieses qualifizierte Personal muss den Inhalt aller zugehörigen Installationsanleitungen kennen sowie über die technische Ausbildung und Erfahrung verfügen, um die Gefahren, die mit der Ausführung einer Aufgabe assoziiert sind, zu kennen und zu wissen, wie sie diese Gefahren für sich selbst und Dritte minimieren können.

    In den USA muss das System gemäß dem US National Electrical Code (NEC) installiert werden.

[^7]:    ${ }^{8}$ Sound pressure is presented for comparison per ISO 7779
    ${ }^{9}$ Declared Sound Power is presented in accordance with ISO 7779, ISO 9296 per ETSI/EN 300753

[^8]:    ${ }^{10}$ Bystander Sound pressure is presented for comparison to other products measured using Bystander Sound Pressure.
    11 Declared Sound Power is presented in accordance with ISO 7779:2010(E), ISO 9296:2010 per ETSI/EN 300 753:2012-01.

[^9]:    10 Bystander Sound pressure is presented for comparison to other products measured using Bystander Sound Pressure.
    11 Declared Sound Power is presented in accordance with ISO 7779:2010(E), ISO 9296:2010 per ETSI/EN 300 753:2012-01.

[^10]:    10 Bystander Sound pressure is presented for comparison to other products measured using Bystander Sound Pressure.
    11 Declared Sound Power is presented in accordance with ISO 7779:2010(E), ISO 9296:2010 per ETSI/EN 300 753:2012-01.

[^11]:    12 Bystander Sound pressure is presented for comparison to other products measured using Bystander Sound Pressure.
    13 Declared Sound Power is presented in accordance with ISO 7779:2010(E), ISO 9296:2010 per ETSI/EN 300 753:2012-01.

[^12]:    14 Switch weights include installed fan module. They do not include power supplies

